簡易檢索 / 詳目顯示

研究生: 趙安生
Chao, An-Sheng
論文名稱: 逐漸逼近式類比數位轉換器之內建自我測試電路設計
Design of Built-In Self-Test for Successive Approximation Register Analog-to-Digital Converters
指導教授: 張順志
Chang, Soon-Jyh
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 83
中文關鍵詞: 類比數位轉換器內建測試設計
外文關鍵詞: ADC, DfT
相關次數: 點閱:52下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要針對逐漸逼近式類比數位轉換器開發內建自我測試電路,以完成線性度測試,包含微分非線性及積分非線性。
    一個嵌入式測試訊號源經設計並實作於逐漸逼近式類比數位轉換器內部,以實現一個可測性設計,其基本原理乃是利用逐漸逼近式類比數位轉換器內部之數位類比轉換器,以實現一個區段線性的測試訊號源,基於數位類比轉換器硬體之重覆使用,此一訊號源僅需少量額外面積,相較於逐漸逼近式類比數位轉換器,此內建訊號源之可測性設計僅增加12.4%之面積。另外,若將此可測性設計與圖樣產生器及輸出響應分析器結合,則可完成內建自我測試之功能。
    另外,為了再進一步降低於內建自我測試電路中設計訊號源的需求,本論文亦提出一個藉由量化逐漸逼近式類比數位轉換器內電容陣列比例的方法,達到不需額外訊號源,而完成線性度估計。首先,由圖樣產生器產生數位控制碼,以設定逐漸逼近式類比數位轉換器內電容陣列,使電容陣列兩端產生相應於個別電容比例之電壓差,此電壓差經由設計於比較器上之量化電路,進行量化,接著配合所推導出來的映射關係,輸出線性度估計之結果,包括微分非線性及積分非線性,而完成整體內建自我測試電路之設計。

    In this dissertation, we develop a built-in self-test (BIST) design for successive approximation register (SAR) analog-to-digital converters (ADCs) to accomplish the linearity tests, including the differential nonlinearity (DNL) and integral nonlinearity (INL).
    The design for testability (DfT) circuit combines the embedded stimulus generator and the SAR ADC. The internal digital-to-analog converter (DAC) in the SAR ADC is controlled by digital patterns to generate the piecewise linear signal as the test stimulus. The embedded stimulus generator reuses the internal DAC, thus the hardware cost is alleviated. The DfT circuit occupied additional 12.4% area of the SAR ADC. The DfT circuit, the pattern generator (PG), and the output response analyzer (ORA) are combined as the BIST design.
    Moreover, another test method is proposed to estimate the linearity without the test stimulus generator by quantifying the capacitance ratios in the internal DAC of the SAR ADC. Firstly, the pattern generator issues the digital pattern to set up a capacitance ratio in the capacitor array. The voltage difference across the capacitor arrays is proportional to the capacitance ratio and quantified by the proposed quantifying circuit, which is combined with the comparator in the SAR ADC. By applying the derived equations between capacitance ratios and the DNL, the linearity test results of the SAR ADC under test, including DNL and INL, are estimated in the BIST design.

    List of Tables xiii List of Figures xv CHAPTER 1 Introduction 1 1.1 Introduction 1 1.2 Organization of the Dissertation 5 CHAPTER 2 Basics of Analog-to-Digital Converter Testing 7 2.1 Static ADC Testing 8 2.1.1 Specifications for Static ADC Testing 8 2.1.2 Back-to-Back Test Method 10 2.1.3 Histogram (Code Density) Test with Linear Ramp Stimulus 11 2.2 Dynamic ADC Testing 13 2.2.1 SNR, SINAD, and ENOB 13 2.2.2 FFT-Based Test 13 2.3 Previous Work 14 2.3.1 Selective Code Measurement 14 2.3.2 Stimulus Error Identification and Removal (SEIR) 16 2.3.3 DfT Circuit for Reducing Test Time 19 2.3.4 MCT Testing Method 20 2.3.5 DfT Circuit for Sigma-Delta ADC 21 2.4 Summary 23 CHAPTER 3 Embedded Stimulus Designs for SAR ADCs 25 3.1 Architecture and Design Concept for Missing Code Test 26 3.1.1 D2D Test 27 3.2 Architecture and Design Concept for Linearity Test 28 3.2.1 Operation and Modification of Conventional Bottom-Plate Sampling SAR ADCs 28 3.2.2 Modification on Differential Top-Plate Sampling SAR ADCs 32 3.2.3 Average Number of Hits per Code 34 3.2.4 Impacts of FDAC Nonlinearity 35 3.2.5 Discussion on Static-Linearity Errors 36 3.3 Implementation of Building Blocks 37 3.3.1 Analog Components 37 3.3.2 Digital Components 39 3.3.3 Overhead 39 3.4 Measurement Results 41 3.4.1 Dynamic Performance and Figure-of-Merit 42 3.4.2 Static Performance 42 3.4.3 Comparison Table 45 3.5 Summary 46 CHAPTER 4 Capacitance-Ratio Quantification Design for Linearity Test 47 4.1 Overview of Proposed Test Method 47 4.1.1 Relation between Capacitance Ratio and DNL 48 4.1.2 Capacitance-Ratio Quantification 53 4.1.3 Built-in Self-Test Design 55 4.1.4 DNL Estimation from Capacitance Ratios 56 4.2 Implementation of Building Blocks 59 4.2.1 SAR ADC 59 4.2.2 Quantification Unit 59 4.2.3 Pattern Generator 61 4.2.4 Output Response Analyzer 61 4.3 Simulation Results and Discussions 62 4.3.1 Area Overhead 62 4.3.2 Dynamic Performance 63 4.3.3 Static Performance for On-chip Verification 64 4.3.4 Static Performance with Capacitor Mismatch at Process Corners 70 4.3.5 Comparator Offset 72 4.3.6 Testable Range 72 4.3.7 Test Time Estimation 72 4.4 Summary 74 CHAPTER 5 Conclusions and Future Work 75 5.1 Conclusions 75 5.2 Future Work 76 REFERENCES 77 PUBLICATION LIST 83

    [1] S.-W. M. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-um CMOS,” IEEE Journal Solid-State Circuits, vol.41, no. 12, pp. 2669-2680, Dec. 2006.
    [2] A. Bonfanti, M. Ceravolo, G. Zambra, R. Gusmeroli, T. Borghi, A.S. Spinelli, and A.L. Lacaita, “A multi-channel low-power IC for neural spike recording with data compression and narrowband 400-MHz MC-FSK wireless transmission,” in Proc. IEEE European Sollid-State Circuits Conference, 2010, pp. 330-333.
    [3] G.-Y. Huang, S.-J. Chang, C.-C. Liu, and Y.-Z. Lin, “A 1-uW 10-bit 200-KS/s SAR ADC with a bypass window for biomedical applications,” IEEE Journal Solid-State Circuits, vol.47, no. 11, pp. 2783-2795, Nov. 2012.
    [4] C.-T. Chiang and W.-H. Chang, “A 12-bit multi-channel dual-mode successive approximation ADC for power management bus (Pmbus) devices,” International Journal of Circuit Theory and Applications, vol. 41, pp. 498-513, May 2013.
    [5] A. Rodriguez-Perez, M. Delgado-Restituto, and F. Medeiro, “Impact of parasitics on even symmetric split-capacitor arrays,” International Journal of Circuit Theory and Applications, vol. 41, pp. 972-987, Sep. 2013.
    [6] W.-Y. Pang, C.-S. Wang, Y.-K. Chang, N.-K. Chou, and C.-K. Wang, “A 10-bit 500-KS/s low power SAR ADC with splitting comparator for bio-medical applications,” in Proc. IEEE Asian Solid-State Circuits Conference 2009, pp. 149-152.
    [7] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE Journal Solid-State Circuits, vol. 45, no. 4, pp. 731-740, Apr. 2010.
    [8] J. Guerber, H. Venkatram, M. Gande, A. Waters, and U.-K. Moon, “A 10-b ternary SAR ADC with quantization time information utilization,” IEEE Journal Solid-State Circuits, vol. 47, no. 11, pp. 2604-2613, Nov. 2012.
    [9] H.-W. Ting, B.-D. Liu, and S.-J. Chang, “Histogram based testing method for estimating A/D converter performance,” IEEE Transactions on Instrumentation and Measurement, vol. 57, no.2, pp. 420-427, Feb. 2008.
    [10] X.-L. Huang, P.-Y. Kang, J.-L. Huang, Y.-F. Chou, Y.-P. Lee, and D.-M. Kwai, “A pre- and post-bond self-testing and calibration methodology for SAR ADC array in 3-D CMOS imager,” in Proc. IEEE European Test Symposium, 2011, pp. 39-44.
    [11] T. Ogawa, H. Kobayashi, S. Uemori, Y. Tan, S. ITO, N. Takai, T. J. Yamaguchi, and K. Niitsu, “Design for testability that reduces linearity testing time of SAR ADCs,” IEICE Trans. Electron, vol. E94-C, no. 6, pp. 1061-1064, Jun. 2011.
    [12] S. Uemori, T. J. Yamaguchi, S. Ito, Y. Tan, H. Kobayashi, N. Takai, K. Niitsu, and N. Ishikawa, “ADC linearity test signal generation algorithm,” in Proc. Asia and South Pacific Design Automation Conference, 2010, pp. 44-47.
    [13] X.-L. Huang and J.-L. Huang, “ADC/DAC loopback linearity testing by DAC output offsetting and scaling,” IEEE Transaction on Very Large Scale Integration Systems, vol. 19, no. 10, pp. 1765-1774, Oct. 2011.
    [14] S. Goyal, A. Chatterjee, M. Atia, H. Iglehart, C. Y. Chen, B. Shenouda, N. Khouzam, and H. Haggag, “Test time reduction of successive approximation register A/D converter by selective code measurement,” in Proc. International Test Conference, 2005, pp. 248-255.
    [15] S. Goyal and A. Chatterjee, “Linearity testing of A/D converters using selective code measurement,” Journal Electronic Testing: Theory and Applications, vol. 24, pp. 567-576, Dec. 2008.
    [16] X.-L. Huang, P.-Y. Kang, H.-M. Chang, J.-L. Huang, Y.-F. Chou, Y.-P. Lee, D.-M. Kwai, and C.-W. Wu, “A self-testing and calibration method for embedded successive approximation register ADC,” in Proc. Asia and South Pacific Design Automation Conference, 2011, pp. 713-718.
    [17] X.-L. Huang, J.-L. Huang, H.-L. Chen, C.-Y. Chen, T.-K. Tsai, M.-F. Huang, Y.-F. Chou, and D.-M. Kwai, “An MCT-based bit-weight extraction technique for embedded SAR ADC testing and calibration,” Journal Electronic Testing: Theory and Applications, vol.28, pp. 705-722, Oct. 2012.
    [18] A.-S. Chao, S.-J. Chang, and H.-W. Ting, “A SAR ADC BIST for simplified linearity test,” in Proc. IEEE International SOC Conference, 2011, pp. 146-149.
    [19] A.-S. Chao, C.-W. Lin, H.-W. Ting, and S.-J. Chang, “A low-cost stimulus design for linearity test in SAR ADCs,” IEICE Trans. Electron., vol. E97-C, 2014.
    [20] A.-S. Chao, C.-W. Lin, H.-W. Ting, and S.-J. Chang, “A capacitance-ratio quantification design for linearity test in differential top-plate sampling SAR ADCs,” International Journal of Circuit Theory and Applications. (accepted)
    [21] B. Provost, and E. Sanchez-Sinencio, “On-chip ramp generators for mixed-signal BIST and ADC self-test,” IEEE Journal Solid-State Circuits, vol. 38, no. 2, pp. 263-273, Feb. 2003.
    [22] W. Liu, P. Huang, and Y. Chiu, “A 12-bit, 45-MS/s, 3-mW redundant successive-approximation-register analog-to-digital converter with digital calibration,” IEEE Journal Solid-State Circuits, vol. 46, no. 11, pp. 2661-2672, Nov. 2011.
    [23] F. Kuttner, “A 1.2V 10b 20MSample/s non-binary successive approximation ADC in 0.13um CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2002, pp. 176-177.
    [24] J. Craninckx and G. Van der Plas, “A 65 fJ/conversion-step 0-to-50 MS/s 0-to-0.7umW 9b charge-sharing SAR ADC in 90 nm digital CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2007, pp. 246-247.
    [25] V. Giannini, P. Nuzzo, V. Chironi, A. Baschirotto, G. Van der Plas, and J. Craninckx, “An 820uW 9b 40MS/s noise-tolerant dynamic-SAR ADC in 90nm digital CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2008, pp. 238-239.
    [26] C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, C.-H. Huang, L. Bu, and C.-C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation,” in IEEE ISSCC Dig. Tech. Papers, 2010, pp. 386-387.
    [27] Y.-Z. Lin, C.-C. Liu, G.-Y. Huang, Y.-T. Shyu, and S.-J. Chang, “A 9-bit 150-MS/s 1.53-mW subranged SAR ADC in 90-nm CMOS,” IEEE Symposium VLSI Circuits Digest of Technical Papers, 2010, pp. 243-244.
    [28] C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, and C.-M. Huang, “A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18um CMOS,” IEEE Symposium VLSI Circuits Digest of Technical Papers, 2010, pp. 241-242.
    [29] M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, “A low-noise self-calibrating dynamic comparator for high-speed ADCs,” in Proc. IEEE Asian Solid-State Circuits Conference, 2008, pp. 269-272.
    [30] M. Burns and G. W. Roberts, An Introduction to Mixed-Signal IC Test and Measurement. New York: Oxford, 2001.
    [31] M. Mahoney, DSP-Based Testing of Analog and Mixed-Signal Circuits. Washington, D. C.: Wiley-IEEE Computer Society Press, 1987.
    [32] J. Doernberg, H.-S. Lee, and D. A. Hodges, “Fill-speed testing of A/D converters,” IEEE Journal Solid-State Circuits, vol. sc-19, no. 6, pp. 820-827, Dec. 1984.
    [33] J. Blair, “Histogram measurement of ADC nonlinear using sine waves,” IEEE Transactions on Instrumentation & Measurement, vol. 43, no. 3, pp. 373-383, Jun. 1994.
    [34] W. Kester, The Data Conversion Handbook. Analog Devices, 2005.
    [35] S.-C. Liang, D.-J. Huang, C.-K. Ho, and H.-C. Hong, “10 GSample/s, 4-bit, 1.2V, design-for-testability ADC and DAC in 0.13um CMOS technology,” in Proc. IEEE Asian Test Symposium, 2007, pp. 416-419.
    [36] C.-K. Ho and H.-C. Hong, “A 6-GS/s, 6-bit, at-speed testable ADC and DAC pair in 0.13um CMOS,” in Proc. IEEE VLSI Design, Automation, and Test, 2009, pp. 207-210.
    [37] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: Wiley, 1997.
    [38] L. Jin, K. Parthasarathy, T. Kuyel, R. Geiger, and D. Chen, “High-performance ADC linearity test using low-precision signals in non-stationary environment,” in Proc. International Test Conference, 2005, pp. 1182-1191.
    [39] L. Jin, K. Parthasarathy, T. Kuyel, D. Chen, and R. L. Geiger, “Accurate testing of analog-to-digital converters using low linearity signals with stimulus error identification and removal,” IEEE Transactions on Instrumentation & Measurement, vol. 54, no. 3, pp. 1188-1199, Jun. 2005.
    [40] L. Jin, D. Chen, and R. L. Geiger, “Code-density test of analog-to-digital converters using single low-linearity stimulus signal,” IEEE Transactions on Instrumentation & Measurement, vol. 58, no. 8, pp. 2679-2685, Jun. 2009.
    [41] H. Xing, H. Jiang, D. Chen, and R. L. Geiger, “High-resolution ADC linearity testing using a fully digital-compatible BIST strategy,” IEEE Transactions on Instrumentation & Measurement, vol. 58, no. 8, pp. 2697-2705, Aug. 2009.
    [42] J. Duan, D. Chen, and R. Geiger, “Cost effective signal generators for ADC BIST,” in Proc. IEEE International Symposium on Circuits & Systems, 2009, pp. 13-16.
    [43] H.-C. Hong, F.-Y. Su, and S.-F. Hung, “A fully integrated built-in self-test - ADC based on the modified controlled sin-wave fitting procedure,” IEEE Transactions on Instrumentation & Measurement, vol. 59, no. 9, pp. 2334-2344, Sep. 2010.
    [44] J.-L. Huang and K.-T. Cheng, “Testing and characterization of the one-bit first-order delta-sigma modulator for on-chip analog signal analysis,” in Proc. International Test Conference, 2000, pp. 1021-1030.
    [45] H.-C. Hong, J.-L. Huang, K.-T. Cheng, C.-W. Wu, and D.-M. Kwai, “Pratical considerations in applying - modulation-based analog BIST to sample-data systems,” IEEE Transactions on Circuits and Systems - II, vol. 50, no. 9, pp. 553-566, Sep. 2003.
    [46] H.-C. Hong, “A design-for-digital-testability circuit structure for - modulators,” IEEE Transactions on VLSI Systems, vol. 15, no. 12, pp. 1341-1350, Dec. 2007.
    [47] Terminology and Test Methods for Analog-to-Digital Converters, 2001, Piscataway, NJ: IEEE, IEEE Std. 1241-2000.
    [48] Digitizing Waveform Recorders, 1994, New York: IEEE, IEEE Std. 1057-1994 (R2001).
    [49] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 0.92mW 10-bit 50-MS/s SAR ADC in 0.13 m CMOS process,” IEEE Symposium VLSI Circuits Digest of Technical Papers, 2009, pp. 236-237.
    [50] F. Alegria, P. Arpaia, A. M. da Cruz Serra, and P. Daponte, “Performance analysis of an ADC histogram test using small triangular waves,” IEEE Transactions on Instrumentation & Measurement, vol. 51, no. 4, pp. 723-729, Aug. 2002.
    [51] T.-C. Lu, L.-D. Van, C.-S. Lin, and C.-M. Huang, “A 0.5 V 1 KS/s 2.5 nW 8.52-ENOB 6.8 fJ/conversion-step SAR ADC for biomedical applications,” in Proc. IEEE Custom Integrated Circuits Conference, 2011, pp. 1-4.
    [52] R. H. Walden, “Analog-to-digital converter technology comparison,” in Proc. IEEE Gallium Arsenide Integrated Circuit Symposium, 1994, pp. 217-219.
    [53] R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 4, pp. 539-550, Apr. 1999.
    [54] K. S. Chan, N. F. Nordin, K. C. Chan, T. Z. Lok, and C. W. Yong, “Multi-histogram ADC BIST system for ADC linearity testing,” in Proc. IEEE Asian Test Symposium, 2013, pp. 213-214.
    [55] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE Journal Solid-State Circuits, vol. 34, no. 5, pp. 599-606, May 1999.
    [56] B. P. Ginsburg, and A. P. Chandrakasan, “500-MS/s 5-bit ADC in 65-nm CMOS with split capacitor array DAC,” IEEE Journal Solid-State Circuits, vol. 42, no. 4, pp. 739-747, Apr. 2007.
    [57] S. Jiang, M. A. Do, K. S. Yeo, and W. M. Lim, “An 8-bit 200-MSample/s pipelined ADC with mixed-mode front-end S/H circuit,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 6, pp. 1430-1440, Jul. 2008.
    [58] B. Razavi, Principles of Data Conversion System Design. IEEE PRESS: New York, 1995.

    無法下載圖示 校內:2019-09-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE