| 研究生: |
王智陞 Wang, Zhi-Sheng |
|---|---|
| 論文名稱: |
工業用機械手臂之動態系統鑑別方法研究 Study on Dynamical System Identification for Industrial Manipulators |
| 指導教授: |
鄭銘揚
Cheng, Ming-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 機械手臂 、系統動態方程式 、系統動態參數鑑別 |
| 外文關鍵詞: | Industrial manipulators, Dynamic equation, System identification |
| 相關次數: | 點閱:103 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究工業用機械手臂之動態系統鑑別方法,主要可分為系統動態方程式推導、測試軌跡產生以及系統參數鑑別方法等三個部分。首先,推導出機械手臂之動態方程式,再將鑑別參數從中分離,化簡為重心參數型式;接著,利用重心參數型式中之逆向動態模型計算條件數,以此條件數優化測試軌跡數學模型之參數,得到具有動態激發能力之測試軌跡;最後,以測試軌跡為機械手臂各軸位置命令,根據所量測的機械手臂各軸角度及角速度等資訊,利用系統參數鑑別方法估算出系統參數。傳統系統參數鑑別方法為最小平方法,但此方法需耗費較多時間、資源進行鑑別資訊前處理。直到近年來於多篇文獻中給出了多種改良式的線上系統參數鑑別方法,如直接逆向動態模型法、兩階段最小平方法與工具變數法等,此類方法除了可以提升鑑別流程速度之外,對於量測誤差及雜訊也有良好的抑制效果,進而有效提升鑑別的準確度。在實作方面,將以二軸機械手臂為實驗平台,根據參數收斂性、參數穩定性及鑑別準確性等三項性能指標,針對上述各類鑑別方法之優劣進行比較。
This thesis mainly focuses on the problem of system identification of industrial manipulators. In this master thesis, system identification of robot manipulators can be divided into three parts: derivation of system dynamic equation for an industrial manipulator, generation of exciting trajectory used in parameter identification, and system parameter identification. At first, the dynamic equation needs to be derived and represented as a linear form of system parameters which are called the barycentric parameters. Second, the dynamic characteristics of a robot manipulator will be excited by the exciting trajectory which is optimized by the condition number of the inverse dynamic model. Finally, the exciting trajectory is adopted as the position command of each axis of the robot manipulator. Based on the measured angular position and measured angular velocity for all axes, a system identification method is employed to estimate the parameter values of the robot manipulator. The most common identification method is the least square method, but it takes much time and resources to deal with data. Recently, new on-line identification methods are proposed; these methods take less time and resources to acquire identification results faster. In addition to that, the two-stage least square method and instrumental variable method can both suppress the disturbance of noise and measurement errors, and obtain consistent identification results. A 2 DOF planar robot is used as the experimental platform to compare the performance of the aforementioned identification methods. The performance indices used in the comparison include convergence of parameter values, accuracy of the estimated parameter values, etc.
[1] F. Reyes, and R. Kelly, “Experimental Evaluation of Model-based Controller on a Direct-drive Robot Arm,” Mechatronic, vol. 11, no. 3, pp. 267-282, Apr. 2001.
[2] G. Buondonno, and A. De Luca, “Efficient Computation of Inverse Dynamics and Feedback Linearization for VSA-based Robots,” IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 368-373, Mar. 2016.
[3] Y. Tang, “Terminal sliding mode control for rigid robots,” Automatica, vol. 34, no. 1, pp. 51-56, Jan. 1998.
[4] C. K. Lin, “Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 6, pp. 849-859, Dec. 2006.
[5] J. Luh, M. Walker, and R. Paul, “Resolved-acceleration Control of Mechanical Manipulators,” IEEE Transactions on Automatic Control, vol. 25, no. 3, pp. 468-474, Jun. 1980.
[6] C. H. An, C. G. Atkeson, J. D. Griffiths, and J. M. Hollerbach, “Experimental Evaluation of Feedforward and Computed Torque Control,” IEEE Transactions on Robotics and Automation, vol. 5, no. 3, pp. 368-373, Jun. 1989.
[7] J. J. E. Slotine, and W. Li, “On the Adaptive Control of Robot Manipulators,” International Journal of Robotics Research, vol. 6, no. 3, pp. 49-59, Sep. 1987.
[8] J. J. E. Slotine, and W. Li, “Adaptive Manipulator Control: A case study,” IEEE Transactions on Automatic Control, vol. 33, no. 11, pp. 995-1003, Nov. 1988.
[9] X. Dong, Z. Shaoguang, L. Xuerong, L. Min, and W. Hongxing, “Impedance Control of Robot Manipulator with Model Reference Torque Observer,” in IEEE Conference on Industrial Electronics and Applications (ICIEA), Melbourne, VIC, Australia, 2013, pp. 994-998.
[10] F. Petit, A. Dietrich, and A. Albu-Schäffer, “Generalizing Torque Control Concepts: Using Well-Established Torque Control Methods on Variable Stiffness Robots,” IEEE Robotics and Automation Magazine, vol. 22, no. 4, pp. 37-51, Dec. 2015.
[11] 陳昭仁,基於觀測器之阻抗控制與被動式速度控制於手臂健身/復健裝置之應用,碩士論文,國立成功大學,2013。
[12] A. De Luca, and R. Mattone, “Actuator failure detection and isolation using generalized momenta,” in Proceedings of the IEEE International Conference on Robotics and Automation, 2003, pp. 634-639.
[13] C. G. Atkeson, C. H. An, and J. M. Hollerbach, “Estimation of inertial parameters of manipulator loads and links,” International Journal of Robotics Research, vol. 5, no. 3, pp. 101-119, Sep. 1986.
[14] B. Armstrong, “On Finding Exciting Trajectories for Identification Experiments Involving Systems with Nonlinear Dynamics,” International Journal of Robotics Research, vol. 8, no. 6, pp. 28-48, 1989.
[15] M. Gautier, and W. Khalil, “Exciting Trajectories for the Identification of Base Inertial Parameters of Robots,” International Journal of Robotics Research, vol. 11, no. 4, pp. 362-375, Aug. 1992.
[16] F. Caccavele, and P. Chiacchio, “Identification of dynamic parameters and feedforward control for a conventional industrial manipulator,” Control Engineering Practice, vol. 2, no. 6, pp. 1039-1050, Dec. 1994.
[17] J. Swevers, W. Verdonck, and J. D. Schutter, “Dynamic Model Identification for Industrial Robots,” IEEE Control Systems, vol. 27, no. 5, pp. 58-71, Oct. 2007.
[18] J. Y. S. Luh, M. W. Walker, and R. P. C. Paul, “On-Line Computational Scheme for Mechanical Manipulators,” ASME Transactions on Journal of Dynamic Systems, Measurement, and Control, vol. 102, no. 2, pp. 69-76, 1980.
[19] J. M. Hollerbach, “A Recursive Lagrangian Formulation of Maniputator Dynamics and a Comparative Study of Dynamics Formulation Complexity,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-10, no. 11, November 1980.
[20] K. H. Low, and M. Vidyasagar, “A Lagrangian Formulation of the Dynamic Model for Flexible Manipulator Systems,” ASME Transactions on Journal of Dynamic Systems, Measurement, and Control, vol. 110, no. 2, pp. 175-181, Jun. 1988.
[21] W. M. Silver, “On the Equivalence of Lagrangian and Newton-Euler Dynamics for Manipulators,” International Journal of Robotics Research, vol. 1, no. 2, pp. 60-70. Jun. 1982.
[22] T. R. Kane, and D. A. Levinson, “The use of Kane’s Dynamical Equations in Robotics,” International Journal of Robotics and Automation, vol. 2, no. 3, pp. 3-21, 1983.
[23] A. Yazdizadeh, K. Khorasani, and R. V. Patel, “Identification of a Two-Link Flexible Manipulator Using Adaptive Time Delay Neural Networks,” IEEE Transactions on Systems, Man, and Cybernetics, part B, vol. 30, no. 1, Feb. 2000.
[24] R. D. Al-Dabbagh, A. Kinsheel, S. Mekhilef, M. S. Baba, and S. Shamshirband, “System Identification and Control of Robot Manipulator Based on Fuzzy Adaptive Differential Evolution Algorithm,” Advances in Engineering Software, vol. 78, no. C, pp. 60-66, Dec. 2014.
[25] W. Khalil, and J. F. Kleinfinger, “Minimum Operations and Minimum Parameters of the Dynamic Models of Tree Structure Robots,” IEEE Transactions on Robotics and Automation, vol. 3, no. 6, pp. 517-526. Dec. 1987.
[26] M. Gautier, and W. Khalil, “Direct calculation of minimum inertial parameters of serial robots,” IEEE Transactions on Robotics and Automation, vol. 6, no. 3, June 1990.
[27] H. Mayeda, K. Yoshida, and K. Osuka, “Base Parameters of Manipulator Dynamics Models,” IEEE Transactions on Robotics and Automation, vol. 6, no. 3, pp. 1367- 1372, June 1990.
[28] C. Presse, and M. Gautier, “New Criteria of exciting trajectories for Robot Identification,” in Proceedings of the IEEE Conference on Robotics and Automation, Atlanta, 1993, pp. 907-912.
[29] M. Gautier, A. Janot, and P. O. Vandanjon, “A New Closed-Loop Output Error Method for Parameter Identification of Robot Dynamics,” IEEE Transactions on Control Systems Technology, vol. 21, no. 2, pp. 428-444, Mar. 2013.
[30] A. Janot, M. Gautier, A. Jubien, and P. O. Vandanjon, “Comparison Between the CLOE Method and the DIDIM Method for Robots Identification,” IEEE Transactions on Control Systems Technology, vol. 22, no. 5, pp. 1935-1941, Sep. 2014.
[31] A. Janot, P. O. Vandanjon, and M. Gautier, “Identification of Physical Parameters and Instrumental Variables Validation With Two-stage Least Squares Estimator,” IEEE Transactions on Control Systems Technology, vol. 21, no. 4, pp. 1386-1393, July 2013.
[32] A. Janot, P. O. Vandanjon, and M. Gautier, “A Generic Instrumental Variable Approach for Industrial Robot Identification,” IEEE Transactions on Control Systems Technology, vol. 22, no. 1, pp. 132-145, Jan. 2014.
[33] W. Khalil, and D. Creusot, “SYMORO+: A system for the symbolic modeling of robots,” Robotica, vol. 15, no. 2, pp. 153-161, 1997.
[34] W. Khalil, A. Vijayalingam, B. Khomutenko, I. Mukhanov, P. Lemoine, and G. Ecorchard, “OpenSYMORO: An open-source software package for Symbolic Modelling of Robots,” in Proceedings of IEEE/ASME International Conference Advanced Intelligent Mechatronics (AIM), July 2014, pp. 1206-1211.
[35] J. Swevers, C. Ganseman, J. D. Schutter, and H. V. Brussel, “Experimental Robot Identification Using Optimised Periodic Trajectories,” Mechanical Systems and Signal Processing, vol. 10, no. 5, pp. 561-577, Sep. 1996.
[36] J. Swevers, C. Ganseman, D. B. Tukel, J. D. Schutter, and H. V. Brussel, “Optimal robot excitation and identification,” IEEE Transactions on Robotics and Automation, vol. 13, no. 5, pp. 730-740, Oct. 1997.
[37] J. Swevers, C. Ganseman, D. B. Tukel, J. D. Schutter, and H. V. Brussel, “Generation of Periodic Trajectories for Optimal Robot Excitation,” Journal of Manufacturing Science and Engineering, vol. 119, no. 4A, pp. 611-615, Nov. 1997.
[38] G. Calafiore, M. Indri, and B. Bona, “Robot Dynamic Calibration: Optimal Excitation Trajectories and Experimental Parameter Estimation,” Journal of Robotic Systems, vol. 18, no. 2, pp. 55-68, Jan. 2001.
[39] K. J. Park, “Fourier-based optimal excitation trajectories for the identification of robots,” Robotica, vol. 24, no. 5, pp. 625-633, 2006.
[40] W. Rackl, R. Lampariello, and Gerd Hirzinger, “Robot Excitation Trajectories for Dynamic Parameter Estimation using Optimized B-Splines,” in Proceedings of the IEEE International Conference on Robotics and Automation, River Centre, Saint Paul, Minnesota, USA, May 2012, pp. 2042-2047.
[41] A. Klimchik, A. Pashkevich, and D. Chablat, “CAD-Based Approach for Identification of Elasto-static Parameters of Robotic Manipulators,” Finite Elements in Analysis and Design, vol. 75, pp. 19-30, 2013.
[42] J. Jin, and N. Gans, “Parameter identification for industrial robots with a fast and robust trajectory design approach,” Robotics and Computer-Integrated Manufacturing, vol. 31, no. C, pp. 21-29, Feb. 2015.
[43] Harry H. KelejianIngmar, and R. Prucha, “A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances,” The Journal of Real Estate Finance and Economics, vol. 17, no. 1, pp. 99-121, 1998.
[44] T. Söderström, and P. Stoica, System Identification. London, U.K.: Prentice-Hall, 1989.
[45] Available:http://www.deltaww.com/Products/CategoryListT1.aspx?CID=060601&PID=2182&hl=zh-TW&Name=DRS40L%E7%B3%BB%E5%
88%97
[46] Available:http://www.fanuc.eu/at/en/robots/robot-filter-page/m-900-serie
s/m-900ib-700
[47] Available:http://www.rethinkrobotics.com/baxter/
校內:2022-07-31公開