| 研究生: |
劉欣怡 Liu, Hsin-Yi |
|---|---|
| 論文名稱: |
拇指在日常生活動作之運動分析 Motion Analysis of the Thumb in Activities of Daily Living |
| 指導教授: |
蘇芳慶
Su, Fong-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 拇指 、日常生活動作 、運動分析 、運動範圍 |
| 外文關鍵詞: | thumb, activities of daily living, motion analysis, range of motion |
| 相關次數: | 點閱:118 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
手部功能在日常生活活動的表現上佔著非常重要的角色,如果拇指因為受傷造成變形或殘缺而喪失功能,則會造成大部分手部的功能喪失。因此,了解手部的動作,尤其是拇指的功能性表現是非常重要的。雖然近年來已有學者研究手部與日常生活活動的關係,然而大部分只著重於食指及中指的活動表現,較少探討對於大拇指在日常生活動作中的表現。本研究是利用動態分析系統來量測拇指在日常生活動作中的運動分析,其主要目的在於:(1) 利用三維衡量法(Three-dimensional)來分析大拇指在日常生活動作中的運動學表現;(2) 比較兩種不同計算腕掌關節(Carpometacarpal joint)角度方法之間的差異;(3) 分析在日常生活動作中三個拇指關節的運動範圍。
本實驗總共收集十六位手指正常無受傷情形的受試者資料,分別進行日常生活中常見的六種動作資料收集來分析動作時大拇指的正常運動型態、運動範圍、功能性極值表現並利用統計方法來比較各個動作之間的差異性。
研究結果顯示,在大部分的動作中,拇指的三個關節幾乎都同時開始角度變化,以及在接觸物體前後,指間關節會有屈曲角度,以及掌指關節及腕掌關節會有外展角度的產生,表示這三個關節在這些日常生活動作中的重要性。因為側向捏握(Lateral pinch)和強力抓握(Power grip)這兩個動作不需要手掌張開的動作去抓握物體,因此這兩個動作在運動範圍以及極值方面的表現都有相似的結果。拇指長度在大部分的日常生活動作中跟拇指關節角度的變化並無明顯的相關性。此外,兩種不同計算腕掌關節角度的方法比較中動作中,強力抓握所造成的誤差最大,由於此動作需要連續做橈側/尺側偏移(radial/ulna deviation),而造成貼在橈骨莖突(styloid process)上的反光標記於皮膚上的滑動較大。拇指關節在六個動作時的協調度及貢獻度的比例結果中,指間關節佔了很高的比例,尤其在抓握的動作中,然而在捏握的動作中,指間關節的比例明顯小於在抓握動作時的表現,顯示在一般抓握的動作中更需要指間關節的活動來完成動作。
由本實驗結果可明確定義出拇指在這些動作中的運動型態特徵,由運動範圍及關節極值的資料中更可定義出拇指在日常生活動作的功能性所需及活動範圍,以期未來亦能作為評估病人拇指功能及設計復健療程中的一項指標。
The purpose of this study were (1) to create a three-dimensional kinematic model to evaluate the thumb motion in the activities of daily living (ADLs); (2) to compare differences of carpometacarpal (CMC) joint angles computed from two kinematic models based on third metacarpal and the radial bone, respectively; and (3) to investigate the range of motion of three thumb joints in ADLs. A motion analysis system was used to capture the thumb motion and Eulerian angles were used to represent joint motion.
Sixteen health subjects participated in this study. Six different ADLs tasks, tip pinch, palm pinch, lateral pinch, cylinder grip, spherical grip, and power grip, were evaluated. The thumb motion pattern, range of motion, and extreme functional joint angles were calculated. By statistic analysis, their differences between six ADLs were compared.
In thumb motion pattern, we found that all three thumb joints started to rotate from the neutral position at the same time in most activities. Significant interphalangeal (IP) flexion, and abduction metacarpophalangeal (MP) and CMC joints were found when holding the objects in most ADLs, except lateral pinch and power grip. Surprisingly, we didn’t find highly significant correlation coefficients between phalanx length and extreme functional angles and range of motion in ADLs. The CMC joint angle showed significant differences between two different kinematic models. The difference of CMC joint between two kinematic models showed the greatest differences in power grip among ADLs due to large amount of skin gliding on the styloid process. Examining the range of motion of three thumb joints in ADLs, the IP joint flexion plays an important role in performing most of tasks, especially in grip activities.
From our study, we had been clearly described the characteristics of the thumb joints motion patterns. The joint motion database in the thumb in ADLs could be applied in evaluating the thumb function loss in the patient and also could provide some references in designing therapeutic programs.
1. Bunnell, S., Opposition of the thumb. Journal of bone and joint surgery, 1938. 20(2): p. 269-284.
2. Kapandji, I.A., The physiology of th joints. 1970, churchill Livingstone. p. 146-202.
3. Kuczynski, K., The thumb and the saddle. The hand, 1975. 7(120).
4. Salmous, S., Muscles, in Gray's Anatomy, P.L. Williams, Editor. 1995, Churchill Livingstone.
5. Chase, R., Anatomy of the thumb, in The thumb. 1994. p. 15-29.
6. Napier, J.R., The prehensile movements of the human hand. Journal of bone and joint surgery, 1956. 38B: p. 902-913.
7. Landsmeer, J.M.F., Power grip and precision handling. Ann Rheum Dis,, 1962. 21: p. 164.
8. Barr, E., A; Lehman-B, J, Biomechanics of the wrist and hand, in Basic Biomechanics of the Musculoskeletal System, J. Butler, Editor. 2001. p. 359-387.
9. Brumfield, R.H. and J.A. Champoux, A biomechanical study of normal functional wrist motion. Clin Orthop, 1984(187): p. 23-25.
10. Nelson, D.L., et al., Wrist range of motion in activities of daily living, in Biomechanics of the hand and wrist. 1994. p. 329-333.
11. Fowler, N.K. and A.C. Nicol, Measurement of external three-dimensional interphalangeal loads applied during activities of daily living. Clin Biomech (Bristol, Avon), 1999. 14(9): p. 646-652.
12. Sakai, N., et al., Motion analysis of the fingers and wrist of the pianist. Med Probl Perform Art, 1996. 11: p. 24-29.
13. Chao, E.Y., et al., Hand joint orientation and range of motion, in Biomechanics of the hand. 1989. p. 73-96.
14. Cooney, W.P., III and E.Y. Chao, Biomechanical analysis of static forces in the thumb during hand function. J Bone Joint Surg Am, 1977. 59(1): p. 27-36.
15. Fowler, N.K. and A.C. Nicol, A force transducer to measure individual finger loads during activities of daily living. J Biomech, 1999. 32(7): p. 721-725.
16. Toft, R. and N. Berme, A biomechanical analysis of the joints of the thumb. J Biomech, 1980. 13(4): p. 353-360.
17. Smith, R.F. and G.A. Buterbaugh, Function and kinesiology of the thumb, in The thumb. 1994. p. 31-43.
18. Rash, G.S., et al., A demonstration of validity of 3-D video motion analysis method for measuring finger flexion and extension. J Biomech, 1999. 32(12): p. 1337-1341.
19. Kuo, L.C., et al., Feasibility of using a video-based motion analysis system for measuring thumb kinematics. J Biomech, 2002. 35(11): p. 1499-1506.
20. Somia, N., et al., The initiation and sequence of digital joint motion. A three-dimensional motion analysis. J Hand Surg [Br], 1998. 23(6): p. 792-795.
21. Nakamura, M., Analysis of voluntary finger movements during hand tasks by a motion analyzer. Journal of Electromyography and kinesiology, 1998. 8: p. 295-303.
22. An, K.N., Chao, E.Y., Cooney, W.P.,, Force in the normal and abnormal hand. Jornal of Orthopedics Research, 1985. 3(2): p. 202-211.
23. Knowlton, R., Gilbert, J., Ulnar deviation and short-term strength reductions as affected by a curve-handled ripping hammer and a conventional claw hammer. Ergonomics, 1983. 26: p. 173-179.
24. 林沛中 手指運動的二維衡量法 國立成功大學碩士論文 1997
25. 郭立杰 拇指運動學的量化分析 國立成功大學博士論文 2003