簡易檢索 / 詳目顯示

研究生: 李仁維
Lee, Ren-Wei
論文名稱: 應用輪胎與路面摩擦力估測於車輛自主緊急煞車系統
Application of Tire/Road Friction Estimation to Autonomous Emergency Braking System
指導教授: 莊智清
Juang, Jyh-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 47
中文關鍵詞: 自主緊急煞車系統輪胎與路面摩擦力估測卡爾曼濾波器
外文關鍵詞: AEBS, Autonomous Emergency Braking System, Tire/Road friction estimation, Kalman filter
相關次數: 點閱:84下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著行車安全日益受到重視,如何減少交通意外的發生,並保障駕駛與乘客的安全,已成為重要的議題。近年來自主緊急煞車系統(Autonomous Emergency Barking System, AEBS)受到相當大的重視,且已成為新車評比項目之一,因此各大車廠均發展自身之自主緊急煞車系統。如何改善系統的性能、適用範圍、與增進強健性,是發展本系統的關鍵議題。
    在發展自主緊急煞車控制系統的過程中,可以發現影響煞車結果至為關鍵的環境變因之一為路面之摩擦力。若使用同樣的煞車控制策略,即使在乾燥的路面能成功煞停,在濕滑的路面上仍可能不及煞停而撞上障礙物;若使用了較保守的煞車控制策略使之能在低摩擦力的路面上煞停,卻可能會導致過早的煞車而不見得適用高摩擦力之路面。因此,欲改善本系統之效能與適用範圍,估測摩擦力便成為至關重要的技術。
    但由於現階段尚無可以直接精確量測路面摩擦係數之感測器,只能由相關之參數推測出摩擦力,所以必須發展出一推測摩擦力之流程,以供改進自主緊急煞車系統表現之參考。本論文在無需額外增加感測器的情況下,利用車輛本身之車身動態感測器取得車輛對煞車時包含加速度、傾角等各項反應,使用車輛動態模型,以推得路面之摩擦係數。取得路面狀況之後即可用於改善自主緊急煞車系統之用。論文最後呈現不同情境下,導入摩擦力估測技術前後之煞車結果。

    The objective of the research is to improve the performance and application scope of the Autonomous Emergency Braking System (AEBS). To accomplish this purpose, we apply the tire/road friction estimation technique to adjust the ermergency braking control strategy. With this method, the system can meet the AEB requirement with higher score. The results imply that the AEBS with tire/road friction estimation on slippery road can improve the performance.

    摘 要 I Extended Abstract III 誌謝 VI 目錄 VIII 圖目錄 XI 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究背景與動機 1 1.3 文獻回顧 2 1.3.1 摩擦力估測相關文獻 2 1.3.2 自主緊急煞車相關文獻 3 1.4 研究貢獻 3 1.5 論文架構 3 第二章 車輛自主緊急煞車系統 5 2.1 模擬架構 5 2.1.1 車輛動態模型 6 2.1.2 雷達感測器模型 7 2.1.3 卡爾曼濾波器 9 2.1.4 路徑預估策略 11 2.1.5 煞車系統模型 13 2.2 結果呈現 14 第三章 輪胎與路面摩擦力估測 15 3.1 車輛動態模型 15 3.2 路面摩擦力估測 17 3.2.1 Dugoff輪胎模型 17 3.2.2 路面最大摩擦係數估測流程 19 第四章 自主緊急煞車控制策略 22 4.1 Euro NCAP之AEB測驗規範 22 4.2 基於距離與基於碰撞時間之自主緊急煞車系統 23 4.3 自主緊急煞車控制策略 24 4.3.1 基本之自主緊急煞車控制策略 24 4.3.2 考慮輪胎與路面摩擦係數之車輛自主緊急煞車控制策略 27 第五章 模擬與結果討論 28 5.1 輪胎與路面摩擦力估測結果之驗證 28 5.2 自主緊急煞車情境模擬 30 5.2.1 未應用摩擦力估測之自主緊急煞車控制策略 31 5.2.2 應用摩擦力估測之自主緊急煞車控制策略 35 5.3 結果分析與討論 38 第六章 結論與未來工作 40 6.1 結論 40 6.2 未來工作 40 參考文獻 42

    [1] T. Bachmann, "Wechselwirkungen im prozeß der reibung zwischen reifen und fahrbahn," Fortschritt Berichte-Vdi Reihe 12 Verkehrstechnik Fahrzeugtechnik, 1998.
    [2] E. Bakker, H. B. Pacejka, and L. Lidner, "A new tire model with an application in vehicle dynamics studies," SAE Technical Paper 0148-7191, 1989.
    [3] B. Breuer, et al., "The mechatronic vehicle corner of Darmstadt University of technology-interaction and cooperation of a sensor tire, new low-energy disc brake and smart wheel suspension," International Journal of Automotive Technology, vol. 3, pp. 63-70, 2002.
    [4] B. Breuer, U. Eichhorn, and J. Roth, "Measurement of tyre/road-friction ahead of the car and inside the tyre," in International Symposium on Advanced Vehicle Control, Yokohama, Japan, 1992.
    [5] J. M. Clanton, D. M. Bevly, and A. S. Hodel, "A low-cost solution for an integrated multisensor lane departure warning system," IEEE Transactions on Intelligent Transportation Systems, vol. 10, pp. 47-59, 2009.
    [6] E. Coelingh, A. Eidehall, and M. Bengtsson, "Collision warning with full auto brake and pedestrian detection - a practical example of automatic emergency braking," in 13th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 155-160, 2010.
    [7] G. R. Curry, Radar system performance modeling, Artech House, 2005.
    [8] R. Dang, et al., "Coordinated adaptive cruise control system with lane-change assistance," IEEE Transactions on Intelligent Transportation Systems, pp. 1-11, 2015.
    [9] L. Dongwoo, et al., "Development of an integrated driving path estimation algorithm for ACC and AEBS using multi-sensor fusion," in IEEE Vehicular Technology Conference (VTC Spring), pp. 1-5, 2012.
    [10] U. Eichhorn and J. Roth, "Prediction and monitoring of tyre/road friction," in XXIV FISITA Congress, 1992.
    [11] J. C. Gerdes and J. K. Hedrick, "Brake system modeling for simulation and control," Journal of Dynamic Systems, Measurement, and Control, vol. 121, pp. 496-503, 1999.
    [12] R. Ghandour, et al., "Tire/road friction coefficient estimation applied to road safety," in 18th Mediterranean Conference on Control & Automation (MED), pp. 1485-1490, 2010.
    [13] M. Giradkar and M. Khanapurkar, "Design and implementation of adaptive front light system of vehicle using FPGA based LIN controller," in 4th Emerging Trends in Engineering and Technology (ICETET) International Conference, pp. 258-261, 2011.
    [14] Robert Bosch GmbH., Long-Range-Radar LRR3: Radar sensor for railway applications (5 ed.) [Online]. Available: http://www.bosch-engineering.de/media/de/pdfs/einsatzgebiete_1/produktdatenblaetter/120903_LRR3_EN_V05_final.pdf, 2012.
    [15] Robert Bosch GmbH., LRR3: 3rd generation long-range radar sensor (04 ed.) [Online]. Available: http://products.bosch-mobility-solutions.com/media/db_application/downloads/pdf/safety_1/en_4/lrr3_datenblatt_de_2009.pdf, 2009.
    [16] VEHICO GmbH., Objective testing of autonomous of autonomous emergency braking systems for the Euro NCAP AEB rating [Online]. Available: http://www.verkehrskolloquium.de/wp-content/uploads/2015/03/Vortrag_helbig.pdf, 2015.
    [17] I. C. Han, L. Bi-Cheng, and H. Feng-Chi, "Development of autonomous emergency braking control system based on road friction," in IEEE International Conference on Automation Science and Engineering (CASE), pp. 933-937, 2014.
    [18] P. Y. Hsiao, et al., "A portable vision-based real-time lane departure warning system: day and night," IEEE Transactions on Vehicular Technology, vol. 58, pp. 2089-2094, 2009.
    [19] D. N. Lee, "A theory of visual control of braking based on information about time-to-collision," Perception, vol. 5, pp. 437-459, 1976.
    [20] J. H. Lim, O. Tsimhoni, and Y. Liu, "Investigation of driver performance with night vision and pedestrian detection systems - part I: empirical study on visual clutter and glance behavior," IEEE Transactions on Intelligent Transportation Systems, vol. 11, pp. 670-677, 2010.
    [21] B. F. Lin, et al., "Integrating appearance and edge features for sedan vehicle detection in the blind-spot area," IEEE Transactions on Intelligent Transportation Systems, vol. 13, pp. 737-747, 2012.
    [22] C. Long, et al., "Maximum tire road friction estimation based on modified Dugoff tire model," in International Conference on Mechanical and Automation Engineering (MAEE), pp. 56-61, 2013.
    [23] S. Müller, M. Uchanski, and K. Hedrick, "Estimation of the maximum tire-road friction coefficient," Journal of Dynamic Systems, Measurement, and Control, vol. 125, pp. 607-617, 2003.
    [24] MathWorks., MATLAB [Online]. Available: http://www.mathworks.com/products/matlab/, 2015.
    [25] MathWorks., Simulink [Online]. Available: http://www.mathworks.com/products/simulink/, 2015.
    [26] M. M. Minderhoud and P. H. L. Bovy, "Extended time-to-collision measures for road traffic safety assessment," Accident Analysis & Prevention, vol. 33, pp. 89-97, 2001.
    [27] Euro NCAP., AEB City [Online]. Available: http://www.euroncap.com/en/vehicle-safety/the-ratings-explained/adult-occupant-protection/aeb-city/, 2013.
    [28] Euro NCAP., AEB Interurban [Online]. Available: http://www.euroncap.com/en/vehicle-safety/the-ratings-explained/safety-assist/aeb-interurban/, 2013.
    [29] Euro NCAP., Autonomous Emergency Braking [Online]. Available: http://www.euroncap.com/en/vehicle-safety/the-rewards-explained/autonomous-emergency-braking/, 2012.
    [30] Euro NCAP., Study confirms high effectiveness of low speed autonomous emergency braking (AEB) [Online]. Available: http://www.euroncap.com/en/press-media/press-releases/study-confirms-high-effectiveness-of-low-speed-autonomous-emergency-braking-aeb/, 2015.
    [31] R. Schram, A. Williams, and M. van Ratingen, "Implementation of autonomous emergency braking (AEB), the next step in Euro NCAP’s safety assessment," ESV, Seoul, 2013.
    [32] Mechannical Simulation., CarSim and TruckSim brake systems, 2013.
    [33] Mechannical Simulation., CarSim overview [Online]. Available: http://www.carsim.com/products/carsim/index.php, 1998.
    [34] Mechannical Simulation., Traffic, target objects, and sensors [Online]. Available: https://www.carsim.com/products/objects_sensors/index.php, 2009.
    [35] S. Sivaraman and M. M. Trivedi, "Dynamic probabilistic drivability maps for lane change and merge driver assistance," IEEE Transactions on Intelligent Transportation Systems, vol. 15, pp. 2063-2073, 2014.
    [36] 內政部警政署, 103年第4週內政統計通報(102年警察機關交通執法概況) [Online]. Available: http://www.moi.gov.tw/stat/news_content.aspx?sn=8078, 2014.
    [37] 內政部警政署, 道路交通事故汽機車駕(乘)者死亡人數及受傷人數—按最初車輛撞擊部位及車種分 [Online]. Available: http://talas-pub.iot.gov.tw/TBfiles/Download/102_A_table71.pdf, 2013.
    [38] 李玉鈞, 車用防撞警示系統及視覺導引系統之發展, 碩士論文, 國立成功大學電機工程學系, 台南, 2011.
    [39] 唐世銘, 交互多模型定位演算法實現於車輛導航之研究, 碩士論文, 國立成功大學電機工程學系, 台南, 2012.
    [40] 陳柏豪, "先進駕駛輔助系統逐步滲透 自動駕駛為期不遠" [Online]. Available: http://www.artc.org.tw/chinese/03_service/03_02detail.aspx?pid=2693, 2014.

    下載圖示 校內:2017-08-27公開
    校外:2017-08-27公開
    QR CODE