簡易檢索 / 詳目顯示

研究生: 楊巧涵
Yang, Chiao-Han
論文名稱: 具製程變異校正之帶隙電壓參考電路
A Bandgap Voltage Reference Circuit with Calibration Technique of Process Variation
指導教授: 李順裕
Lee, Shuenn-Yuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 81
中文關鍵詞: 製程變異帶隙電壓參考電路溫度係數電源抑制比
外文關鍵詞: Bandgap voltage reference circuit, Temperature coefficient
相關次數: 點閱:184下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於在許多論文或研究中,皆會發現帶隙電壓參考電路受製程影響嚴重,導致溫度係數的量測結果不如模擬預期,因此在本論文研究中,我們將探討製程變化的影響,並提出一個具參考性的模擬方式來分析製程變異的影響以及兩種具溫度補償和製程變異校正之帶隙電壓參考電路。第一種改善電路為電阻trimming方式之帶隙電壓參考電路,主要利用四個開關控制四種不同阻值的電阻來實現一階補償的校正。第二種改善電路為抗電阻製程變異之帶隙電壓參考電路,電路針對電阻製程變異影響設計二階補償電路,其中二階補償電路包含PTAT電流補償電路和CTAT電流補償電路。
    本篇論文採用TSMC 0.18μm 1P6M CMOS製程,電阻trimming方式之帶隙電壓參考電路從0度到120度時的最好的溫度係數量測結果為5.35 ppm/℃,PSR在100 Hz與1K Hz時量測結果分別為-55.4 dB與-46.3 dB,電壓1.8 V時電流消耗為41.6 μA。另外,抗電阻製程變異之帶隙電壓參考電路從0度到120度時的最好的溫度係數量測結果為12.22 ppm/℃,PSR在100 Hz與1K Hz時量測結果分別為-39.6 dB與-40.7 dB,電壓1.8 V時電流消耗為58.3 μA。總面積大小為1.105*1.1 mm2。

    In this study, we present two high precision bandgap voltage reference (BGR) circuits with calibration technique of process variation. The calibration technique of first order compensation by four switches using to control the different resistance values of resistors in the first proposed circuit. Moreover, we also present a new compensation circuit in the second proposed circuit, which can automatic calibrate the reference voltage of BGR circuit when BJTs and MOSFETs operate in TT corner and Resistors operate in any kind of process corners. The measurement results of BGR with calibration technique of resistance trimming show that the best temperature coefficient is 5.35 ppm/˚C at temperature from 0 ˚C to 120 ˚C, the quiescent current consumption is 41.6 μA with a power supply of 1.8 V. Furthermore, the measurement results of BGR with calibration technique of resistance process variation show that the best temperature coefficient is 12.22 ppm/˚C at temperature from 0˚C to 120˚C, the average quiescent current consumption is 58.3 μA with a power supply of 1.8 V. Total active area of chip is 1.22 mm2.

    摘要 II 誌謝 IX 章節目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 研究動機 1 1.2 研究方法與目的 2 1.3 論文架構 3 第二章 帶隙電壓參考電路 4 2.1 一階補償基本概念 4 2.1.1 與溫度無關之電壓 6 2.1.2 基於運算放大器乘β型態之帶隙電壓參考電路 7 2.2 二階補償方式 10 2.2.1 電流相加補償電路 10 2.2.2 電流相減補償電路 11 2.2.3 電阻溫度係數比補償電路 13 2.2.4 非線性電流補償電路 13 2.3 低電壓帶隙電壓參考電路 17 2.3.1 Current mode之帶隙電壓參考電路 17 2.3.2 MOS實現之帶隙電壓參考電路 20 第三章 電路設計 23 3.1 重要規格介紹 23 3.1.1 電源線性調節率 23 3.1.2 溫度係數 24 3.1.3 電源電壓抑制比 24 3.1.4 靜態電流 25 3.1.5 晶片面積 25 3.2 設計考量 26 3.2.1 Ratio比值模擬 26 3.2.2 偏壓電流鏡模擬 28 3.2.3 運算放大器增益評估 30 3.3 製程變異介紹 32 第四章 具製程變異校正之帶隙電壓參考電路 35 4.1 架構一、電阻TRIMMING方式之帶隙電壓參考電路 35 4.2 架構二、抗電阻製程變異之帶隙電壓參考電路 41 4.3 二階補償之帶隙電壓參考電路 45 4.3.1 PTAT非線性電流補償之參考電壓電路 45 4.3.2 CTAT非線性電流補償之參考電壓電路 47 4.3.3 電阻溫度係數比之參考電壓電路 49 第五章 模擬與量測 52 5.1 帶隙電壓參考電路模擬(T18-107D-A0032) 52 5.1.1 架構一、電阻trimming方式之帶隙電壓參考電路 52 5.1.2 架構二、抗電阻製程變異之帶隙電壓參考電路 57 5.2 帶隙電壓參考電路量測(T18-107D-A0032) 61 5.2.1 架構一、電阻trimming方式之帶隙電壓參考電路 61 5.2.2 架構二、抗電阻製程變異之帶隙電壓參考電路 66 5.2.3 溫度係數比較表 69 5.3 佈局考量 72 5.4 晶片與PCB照相圖 73 5.5 相關文獻規格比較 74 第六章 結論與未來研究方向 75 6.1 結論 75 6.2 未來方向 76 參考文獻 77 口委建議及回覆 80

    [1] D. Hilbiber, “A new semiconductor voltage standard,” in Proc. 1964 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, Philadelphia, Feb. 1964, pp.32-33.
    [2] R. Widlar, “New developments in IC voltage regulators,” in Proc. 1970 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, Feb. 1970, pp. 158-159.
    [3] H. Banba et al., “A CMOS bandgap reference circuit with sub-1-V operation,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 670-674, May 1999.
    [4] H. Zhou, B. Zhang, Z. J. Li and P. Luo, “A New CMOS Current Reference with High Order Temperature Compensation,” in Proc. 2006 International Conference on Communications, Circuits and Systems, Jun. 2006, pp.2189-2192.
    [5] M. D. Ker, J. S. Chen and C. Y. Chu, “New curvature-compensation technique for CMOS bandgap reference with sub-1-V operation,” in Proc. 2005 IEEE International Symposium on Circuits and Systems, May 2005, pp. 3861-3864.
    [6] K. N. Leung, P. K. T. Mok, and C. Y. Leung, “A 2-V 23-μA 5.3-ppm/°C 4th-order curvature-compensated CMOS bandgap reference,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 561-564, Mar. 2003.
    [7] M.Gunawan, G. C. M. Meijer, J. Fonderie, and J. H. Huijsing, ‘‘A curvature-corrected low-voltage bandgap reference,’’ IEEE J. Solid-State Circuits, vol. 28, no.6, pp. 667-670, Jun. 1993.
    [8] C. W. Kok and W. S. Tam, CMOS Voltage References: An Analytical and Practical Perspective. Singapore: IEEE-Wiley, 2013.
    [9] 霍特式心電圖,Available: http://en.wikipedia.org/wiki/Holter_monitor
    [10] PC-80B快速心電檢測儀,Available: http://www.healforce.com/hk/index.php?ac=article&at=read&did=394
    [11] C. Peters, J. Handwerker, F. Henrici, M. Ortmanns, and Y. Manoli, “Experimental results on power efficient single-poly floating gate rectifiers,” IEEE International Symposium on Circuits and Systems, May 2009, pp. 1097-1100.
    [12] K. N. Leung and P. K. T. Mok, “A sub-1-V 15-ppm/℃ CMOS bandgap voltage reference without requiring low threshold voltage device,” IEEE J. Solid-State Circuits, vol. 37, no.4, pp 526-530, April 2002.
    [13] K. N. Leung and P. K. T. Mok, “A CMOS Voltage Reference Based on Weighted △VGS for CMOS Low-Dropout Linear Regulators,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 146-150, Jan. 2003.
    [14] R. Widlar, “New developments in IC voltage regulators,” IEEE J. Solid-State Circuits, vol. 6, no. 1, pp. 2-7, Feb. 1971.
    [15] T. Grotjohn and B. Hoefflinger, “A parametric short-channel MOS transistor model for subthreshold and strong inversion current,” IEEE Trans. Electron Devices, vol. 31, no. 2, pp. 234-246, Feb. 1984.
    [16] M. S. Kim et al., “Optical subthreshold current method for extracting the interface states in MOS systems,” IEEE Electron Device Lett., vol. 25, no. 2, pp. 101-103, Feb. 2004.
    [17] Fred D. Waldhauer, Feedback. New York: Wiley, 1982.
    [18] 貝茲曲線,Available: https://zh.wikipedia.org/wiki/%E8%B2%9D%E8%8C%B2%E6%9B%B2%E7%B7%9A
    [19] R. A. Zawawi and O. Sicdek, “A new curvature-corrected CMOS bandgap voltage reference,” IEICE Electron. Express, Vol. 9, No. 4, pp. 240-244, Feb 2012.
    [20] R. A. Zawawi, N. A. Rhaffor, S. K. K. Mohd, S. S. Hamid, A. A. Manaf, and K. Sawada, “A CMOS bandgap voltage reference with current-control circuits for the extended operating temperature range,” in Proc. 2017 International SoC Design Conference (ISOCC), Nov. 2017, pp. 117-118.
    [21] P. Malcovati, F. Maloberti, C. Fiocchi, and M. Pruzzi, “Curvature-compensated BiCMOS bandgap with 1-V supply voltage,” IEEE J. Solid-State Circuits, vol. 36, no. 7, pp. 1076-1081, Jul. 2001.
    [22] C. Yang, X. Cui, B. Wang and C. L. Lee, “A 1.8ppm/℃ Low Temperature Coefficient Curvature Compensated Bandgap for the Low Voltage Application,” in Proc. 2013 IEEE International Conference of Electron Devices and Solid-state Circuits, Jun. 2013, pp. 1-2.
    [23] J. Sheng, Z. Chen, and B. Shi, “A 1V supply area effective CMOS bandgap reference,” in Proc. 2013 International Conference on ASIC, Oct. 2003, vol. 1, pp. 619-622.
    [24] B. Ma and F. Yu, “A novel 1.2-V 4.5-ppm/°C curvature-compensated CMOS bandgap reference,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 4, pp. 1026-1035, Apr. 2014.
    [25] Q. Duan and J. Roh. “A 1.2-V 4.2-ppm/C High-Order Curvature-Compensated CMOS Bandgap Reference.” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 3, pp. 662-670, Mar. 2015.
    [26] T. Vergine, M. De Matteis, S. Michelis, G. Traversi, F. De Canio, and A. Baschirotto, “A 65 nm rad-hard bandgap voltage reference for LHC environment,” IEEE Trans. Nucl. Sci., vol. 63, no. 3, pp. 1762-1767, Jun. 2016.
    [27] Y. Park, H. Kim, J. Oh, Y. Choi, and B. Kong, “Compact 0.7-V CMOS voltage current reference with 54/29-ppm/°C temperature coefficient,” in Proc. 2009 International SoC Design Conference (ISOCC) , Nov. 2009, pp. 496-499.

    下載圖示 校內:2024-06-20公開
    校外:2024-06-20公開
    QR CODE