簡易檢索 / 詳目顯示

研究生: 林仲柏
Lin, Chun-Po
論文名稱: 協和電廠進水口閘門對於抽水井流場影響之研究
On the influence of an upstream sluice gate to pump sump flows in Shen-Ho Power Plant
指導教授: 黃煌煇
Hwung, Hwung-Hweng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 87
中文關鍵詞: 閘門抽水井
外文關鍵詞: gate, sump
相關次數: 點閱:88下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   大型泵被廣泛地應用於污水處理廠、防洪抽水站及電廠循環冷卻水系統,而攸關大型泵能否有效率地運轉或其機件壽命能否合乎預期,其關鍵因素之一即是流體在進入吸水口前之流場能否保持一定之均勻與穩定,因此介於抽水站前池及吸入口間之抽水井設計就顯得格外重要。儘管抽水井之幾何設計可參考一些廣為應用之設計準則,如美國之HI標準和英國之BHRA準則,然而其設計參考值只能適用於較簡單之邊界情況,面對現場常有之複雜地形和抽水井內部結構,仍需要水工模型試驗加以較驗。
      本文旨在以水工模型試驗探討大型泵抽水井在不同閘門沒水深和不同福祿數下之漸進段流場特性。試驗模型採用成大水工試驗所針對協和電廠循環冷卻水抽水井所設計之模型,長度比尺為1:10。文中利用超音波都卜勒流速儀(ADV)量測抽水井之三維流場,討論在各種試驗條件下之其平均流速、流速標準偏差和渦流強度分佈特性,並藉由轉速計觀測吸入口喉部旋轉角度來探討其影響程度。
      試驗結果顯示在無閘門配置下,抽水井流場之流速分佈頗為均勻;在有閘門配置下,水體通過閘門後,會在閘門後方發生分離現象並明顯形成一Y軸向之主要渦流,此時上層水體之流速標準偏差和渦流強度均明顯增加,形成主要擾動源。當閘門沒水深增加時,水體受到影響範圍增大,渦流強度、流速標準偏差和旋轉角度也都有增加的趨勢。當福祿數增加時,渦流強度、流速標準差和旋轉角度也愈大,此與前人研究中福祿數對於抽水井流場影響之趨勢相同。

      Large-scale pumps have been extensively used in sewage treatment plants, flood control pumping stations, and circulating cooling water system of electric power plants. To keep these pumps work efficiently, the flow field in front of the suction pipe must keep uniform and stable. So the design of a sump that is normally defined to be between a forbay and a suction pipe has been a very important issue. Although the geometric design of sump can refer to guidelines which were widely used, ex., the HI Standards and BHRA guidelines, these guidelines are only valid for a simple geometry. In case for complex situations, an evaluation of the preliminary design is still needed through physical modeling tests.
      The objectives of present paper are to investigate the pump sump flow fields under different sluice gate submergences and Froude Numbers through physical modeling tests. A 1:10 scale intake model, similar to the circulating water pump in the Shen-Ho Power Plant, was used. Detailed three-dimensional measurements of the approach flow in the pump sump were obtained by using an Acoustic Doppler Velocimeter(ADV). The distributions of mean velocity, velocity standard deviation, and vorticity in the pump sump under difference experimental conditions were discussed. The swirl angles at the throat of the suction pipe were also measured by swirl meter to investigate the influence of different sluice gate submergences and Froude Numbers.
      The experimental results show that without sluice gate, the pump-approach flow distributions are uniform. With sluice gate, flow separation occurred behind the sluice gate and transverse vortices formed. The velocity standard deviation and vorticity increase at higher depths. The flow at higher positions becomes the main source of disturbance. As the sluice gate submergence increases, the influenced range of flow enlarged. And vorticity, velocity standard deviation, and swirl angle also increase. As the Froude Number increases, vorticity, velocity standard deviation, and swirl angle also increase. This trend is the same as references mentioned.

    中文摘要 Ⅰ 英文摘要 Ⅱ 謝誌 Ⅲ 目錄 Ⅳ 表目錄 Ⅵ 照片目錄 Ⅵ 圖目錄 Ⅶ 符號說明 XI 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 本文目的與組織 6 第二章 實驗設計和方法 7 2.1 因次分析 7 2.2 模型設計與建構 8 2.3 試驗儀器、設備與佈置 9 2.4 試驗步驟 16 2.5 試驗條件 18 2.6 流速量測點位 20 第三章 試驗分析 23 3.1 平均流速與流速標準偏差 23 3.2 渦流強度 23 3.3 旋轉角度 24 第四章 結果與討論 26 4.1 漸進段平均流場特性 26 4.2 渦流強度分佈特性 32 4.3 平均流速標準偏差分佈特性 34 4.4 吸入口旋轉角度 36 第五章 結論與建議 84 5.1 結論 84 5.2 建議 84 參考文獻 86

    1. 黃國書、楊景旭,「協和電廠循環水泵抽水井水工模型試驗」,台南水工試驗所研究報告第293號,2003。
    2. Ansar, M., Nakato, T., “Experimental Study of 3D Pump-Intake Flow with and without Cross Flow”, J. of Hydr. Eng., ASCE, vol.127, No.10, pp. 825-834, 2001.
    3. Arboleda, G.., “Effects of Approach Flow Conditions on Pump Sump Design”, J. of Hydr. Eng., ASCE, vol.122, No.9, pp. 489-494, 1996.
    4. De Siervi, F., Viguier, H. C., Greitzer, E.M., and Tan C.S. (1982). “Mechanisms of Inlet-Vortex Formation.”, J. of Fluid Mech, vol. 124, pp. 173-207.
    5. Gulliver, J.S., and Rindel, A,J., ”Weak Vortices at Vertical Intakes”, J. of Hydr. Eng., ASCE, vol.113, No.9, pp. 1101-1116, 1987.
    6. Hecker, G.E., “Fundamentals of Vortex Inlet Flow”, IAHR Hydraulic Structures Design Manual on Swirl Flow Problems at Intakes, edited by J.Knauss, Balkema/Rotterdam, pp. 13-38.
    7. Hydraulic Institute Standards, “Centrifugal, Rotary and Reciprocating Pumps”, 14 th. Ed., HIS, Cleveland, Ohio., 1998.
    8. Jain, A.K., Raju, K.G.R. ,and Garde, R.J., “Vortex Formation at Vertical Pipe Intakes”, J. of Hydr. Div., ASCE, vol.104, No.10, pp. 1429-1445, 1978.
    9. Padmanabhan, M., “Air Ingestion Due to Free Surface Vortices”, J. of Hydr. Eng., ASCE, vol.110, No.12, pp. 1855-1859, 1984.
    10. Padmanabhan, M., and Hecker, G. E., “Scales Effects in Pump Sump Models”, J. of Hydr. Eng., ASCE, vol.110, No.11, pp. 1540-1556, 1984.
    11. Peterson, I.S., and R.M. Noble, “The Right Approach”, Proceedings of the IAHR-Symposium on Operating Problems of Pump Stations and Power Plants, 1982.
    12. Prosser, M.J., “The Hydraulic Design of Pump Sumps and Intakes”, British Hydromech. Res. Assn., and Constr. Industry Res. and Info. Assn., Cranfield, England., 1977.
    13. Ouick, M. C., ”Efficiency of Air-Entraining Vortex Formulation”, J. of Hydr. Div., ASCE, vol.96, No.7, pp. 1403-1416, 1970.
    14. Tulliis, J.P., “Modeling in Design of Pumping Pits”, J. of Hydr. Div., ASCE, vol.105, No.9, pp. 1053-1063, 1979.

    下載圖示 校內:立即公開
    校外:2004-07-20公開
    QR CODE