簡易檢索 / 詳目顯示

研究生: 林采潔
Lin, Tsai-Jie
論文名稱: 應用於燃料電池之疊接式轉換器
Cascoded Converter for Fuel Cell
指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 75
中文關鍵詞: 燃料電池疊接式電力轉換器全橋換流器混合供電系統
外文關鍵詞: Fuel cell, Cascoded converter, Full-bridge inverter, Hybrid system
相關次數: 點閱:115下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之目的在於研製一應用於燃料電池之疊接式轉換器。前級雙向直流轉換器除了改善燃料電池無法瞬間提供能量之特性,同時具備將輸出能量回收至鉛酸電池的功能。由於前級轉換器的架構為非隔離型且具疊接特性,故可將大部分能量直接提供至負載使用,並利用電壓補償概念以提高前級系統之效率。後級交流轉換器採用傳統式全橋換流器,利用回授補償輸出交流電壓,使得輸出電壓能穩定於110Vrms。此外,為控制三電源疊接系統,本論文利用雙迴路燃料電池電壓控制策略,以達到高效率之能量管理。而在各級轉換器之架構效率方面皆達到93%以上,整體系統額定規格800 W。控制電路採用數位訊號處理器(Digital Signal Processor, DSP)實現全數位控制,並可大幅提升系統可靠度並減少電路體積。

    In this thesis, the cascode converter for hybrid fuel cell (FC) applications is proposed. The bidirectional DC-DC converter can be utilized to improve the transient characteristic of fuel cell and convert the energy from load to battery. Most energy is supplied directly to the output load, because of the cascoded converter. Therefore, the source cascoded topology uses the concept of voltage compensation to achieve high efficiency. The DC-AC inverter use feedback voltage control to stabilize ac voltage output (110Vrms). Moreover, a two-loop active FC voltage control for the proposed system is presented to achieve highly efficient power management. The overall efficiency of the bidirectional DC-DC converter can achieve 93% and 800W. With the aid of DSP, full digital controller can be realized and the system stability can be enhanced. This also obviously reduces the circuitry size and provides upgrade flexibility.

    摘要 I ABSTRACT II 誌謝 VII 目錄 IX 表目錄 XII 圖目錄 XII 第1章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 論文大綱 4 第2章 燃料電池基本特性說明 5 2.1 燃料電池原理及構造 5 2.2 燃料電池類型 8 2.3 質子交換膜燃料電池 (PEMFC) 11 2.4 燃料電池之極化現象 12 第3章 燃料電池電力轉換器系統分析 14 3.1 前言 14 3.2 前級DC-DC電力轉換器系統架構 15 3.2.1 單向DC-DC轉換器之燃料電池供電模式分析 18 3.2.2 雙向DC-DC轉換器 20 3.3 前級DC-DC電力轉換器控制分析 26 3.3.1 燃料電池最小供電模式(V_FC≤V_([FC]_min )) 28 3.3.2 鉛酸電池充電模式(V_([FC]_min )≤V_FC≤V_([FC]_max )) 29 3.3.3 燃料電池箝位模式(V_FC≥V_([FC]_max )) 30 3.3.4 輸出電壓供電模式(V_([FC]_min )≤V_FC≤V_([FC]_max )) 31 3.4 前級燃料電池混合供電系統分析 32 3.4.1 模式I:啟動暫態 34 3.4.2 模式II:額定工作 35 3.4.3 模式III:滿載工作 35 3.4.4 模式IV:回收能量 36 3.5 後級-全橋換流器系統架構 37 3.5.1 雙極式切換 38 3.5.2 單極式切換 39 3.6 後級-全橋換流器系統控制分析 42 第4章 軟、硬體規劃與實驗結果分析 44 4.1 前言 44 4.2 硬體電路設計 44 4.2.1 主系統電路 44 4.2.2 周邊電路 50 4.3 軟體規劃 54 4.3.1 數位微處理控制器 54 4.3.2 類比數位轉換比例設計 55 4.4 實驗結果 56 4.4.1 輔助供電電路實作波形 56 4.4.2 前級DC-DC電力轉換器實作波形 57 4.4.3 後級DC-AC電力轉換器實作波形 63 4.4.4 燃料電池混合供電系統實作波形 64 4.5 疊接式轉換器之架構效率 67 第5章 結論與未來展望 69 5.1 結論 69 5.2 未來研究方向 70 參考文獻 71

    [1] F. Barbir, PEM Fuel Cells: Theory and Practice. San Diego: Elsevier Acad. Press, pp. 1–32, 271–336, 2005.
    [2] F. Z. Peng, M. Shen, and K. Holland, “Application of Z-source inverter for traction drive of fuel cell-battery hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 1054–1061, May. 2007.
    [3] A. Payman, S. Pierfederici, and F. Meibody-Tabar, “Energy management in a fuel cell/supercapacitor/multisource/multiload electrical hybrid system,” IEEE Tran. Power Electron., vol. 24, no. 12, pp. 2681–2691, Dec. 2009.
    [4] M. Marchesoni and C. Vacca, “New DC-DC converter for energy storage system interfacing in fuel cell hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 301–308, Jan. 2007.
    [5] J. Moreno, M. E. Ortuzar, and J. W. Dixon, “Energy-management system for a hybrid electric vehicle, using ultra-capacitors and neural networks,” IEEE Trans. Indus. Electron., vol. 53, no. 2, pp. 614–623, Apr. 2006.
    [6] A. Emadi, K. Rajashekara, S. S. Williamson and S. M. Lukic, “Topological Overview of Hybrid Electric and Fuel Cell Vehicular Power System Architectures and Configurations,” IEEE Trans. Vehicular Technology, vol. 54, pp.763-770, May. 2005.
    [7] L. Palma, P. N. Enjeti, “A Modular Fuel Cell, Modular DC–DC Converter Concept for High Performance and Enhanced Reliability, ” IEEE Tran. Power Electron, vol. 24, no. 6, Jun. 2009.
    [8] Khaligh, M. Rahimi, Y. J. Lee, J. Cao, a. Emadi, S. D. Andrews, C. R. Robinson and C. Finnerty, “Digital Control of an Isolated Active Hybrid Fuel Cell/Li-Ion Battery Power Supply,” IEEE Tran. Vehicular Technology, vol. 6, no. 2, pp. 3709-3721, Nov. 2007.
    [9] S. K. Changchien, T. J. Liang, J. F. Chen and L. S. Yang, “Novel High Step-up DC-DC Converter for Fuel Cell Energy Conversion System,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 271-336, Jun. 2010.
    [10] J. M. Correa, F. A. Farret and J. R. Gomes, “Simulation of Fuel-Cell Stacks Using a Computer-Controlled Power Rectifier with the Purposes of Actual High-Power Injection Applications,” IEEE Trans. Industry Application, vol. 39, pp. 1136-1142, July/Aug. 2003.
    [11] 劉恆齊,綠色能源科技與減碳效益之選擇價值評估之研究,國立台北大學碩士論文,2010。
    [12] 劉尉仕,燃料電池數位控制電力轉換器之研製,國立雲林科技大學碩士論文,民國93年6月。
    [13] 黃鎮江,燃料電池,初版,全華科技圖書,民國92年。
    [14] 賴德倫,新型疊接架構於燃料電池混合供電系統,國立成功大學碩士論文,民國102年7月。
    [15] 本間琢也,圖解燃料電池百科,全華科技圖書,2004年10月。
    [16] 王信博,台灣氫能運輸工具燃料電池產業的發展研究,東海大學管理碩士論文,民國98年10月。
    [17] 經濟部能源局,台灣燃料電池資訊網,2014。
    [18] 吳千舜﹑諸柏仁,燃料電池質子交換膜的最新發展,國立中央大學化學系論文,民國93年。
    [19] 曾重仁﹑蔡秉倉,燃料電池性能量測與實作,民國101年7月。
    [20] 林詠凱,高效率雙向直流轉換器的研製,國立台北科技大學碩士論文,民國95年7月。
    [21] S. Luo, “A Review of Distributed Power System Part I: DC Distributed Power System” IEEE Trans. on Aerospace and Electron. System, vol 20, pp. 5-16, Aug. 2005.
    [22] W. C. Liao, T. J. Liang, H. H. Liang, H. K. Liao, L. S. Yang, K.C. Juang, and J. F. Chen, “Study and Implementation of a Novel Bidirectional DC-DC Converter with High Conversion Ratio,” IEEE, Energy Conversion Congress and Exposition (ECCE)., pp. 134 – 140, Sept. 2011
    [23] T. J. Liang, T. H. Ai, and J. F. Chen, “Flyback-Forward Power Factor Correction Circuit with Line-Frequency Ripple Suppression,” IEE Proc., vol. 149, no. 6, pp. 474-480, Nov. 2002.
    [24] W. Yu, H. Qian, and J. S. Lai, “Design of High-Efficiency Bidirectional DC-DC Design of High-Efficiency Bidirectional DC-DC Measurement,” IEEE Trans. Industrial Electron. pp. 685 - 690, 10-13, Nov. 2008.
    [25] W. S. Liu, J. F. Chen, T. J. Liang, and R. L. Lin, “Multicascoded Sources for a High-Efficiency Fuel-Cell Hybrid Power System in High-Voltage Application,” IEEE Trans. Power Electronics. vol. 26, no. 3, pp. 931-942, March 2011.
    [26] Q. L. Zhao, Y. H. Xu, X. Y. Jin, W. Y. Wu, and L. L. Cao, “DSP-Based Closed-Loop Control of Bidirectional Voltage Mode High Frequency Link Inverter with Active Clamp,” IEEE Trans. Ind. Applications, vol. 2, pp. 928-933, Oct. 2005.
    [27] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics. 2nd Ed. John Wiley, New York, USA, 1950, pp. 39-60.
    [28] T. J. Liang and K. C. Tseng, “Analysis of integrated boost-flyback step-up converter,” IEEE Proc, Vol. 152, No. 2, pp. 217-225, March 2003.
    [29] J. I. Itoh and T. Fujii, “A new approach for high efficiency buck-boost DC/DC converter using series compensation,” in Proc. IEEE PESC, pp. 2109-2114, June 2008.
    [30] A. Khaligh, “Stability Criteria for the Energy Storage Bi-Directional DC/DC Converter in the Toyota Hybrid System II,” in Proc. IEEE VPPC, pp. 348-352, Sept. 2007.
    [31] R. J. Wai and R. Y. Duan, “High-Efficiency Power Conversion for Low Power Fuel Cell Generation System,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 847-856, Jul. 2005.
    [32] J. E. Larminie and A. Dicks, Fuel Cell Systems Explained. Chichester, U.K. Wiley, pp.308, 2000.
    [33] C. Wang, M. H. Nehrir, and S. R. Shaw, “Dynamic models and model validation for PEM fuel cell using electrical circuits,” IEEE Trans. Energy Conversion, vol. 20, no. 2, pp. 442-451, June 2005.
    [34] H. Xu, L. Kong, and X. Wen, “Fuel cell power system and high power DC-DC converter,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1250-1255, Sept. 2004.
    [35] J. F. Chen, W. S. Liu, R. L. Lin, T. J. Liang, and C. H. Liu, “High-Efficiency Cascode Forward Converter of Low Power PEMFC System,” in Proc. IEEE IPEMC, vol. 1, pp. 361-367, Aug. 2006.
    [36] R. J. Wai and R. Y. Duan, “High-Efficiency Power Conversion for Low Power Fuel Cell Generation System,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 847-856, July 2005.
    [37] 劉尉仕,應用於燃料電池系統之疊接行轉換器分析與設計,國立成功大學電機工程系博士論文,民國99年12月。
    [38] S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, “Novel High Step-up DC-DC Converter for Fuel Cell Energy Conversion System,” IEEE Trans. Ind. Electron., vol. 57, no. 6, June 2010.
    [39] W. S. Liu, J. F. Chen, T. J. Liang, R. L. Lin, and C. H. Liu, “Analysis, Design, and Control of Bidirectional Cascoded Configuration for a Fuel Cell Hybrid Power System,” IEEE Trans. Power Electron., vol. 25, pp. 1565-1575, Jun. 2010.
    [40] A. Khaligh, M. Rahimi, Y. J. Lee, J. Cao, A. Emadi, S. D. Andrews, C. R. Robinson, and C. Finnerty, “Digital control of an isolated active hybrid fuel cell/Li-Ion battery power supply,” IEEE Tran. Vehicular Technology, vol. 6, no. 2, pp. 3709-3721, Nov. 2007.
    [41] J. V. Mierlo, Y. Cheng, J. M. Timmermans and P. V. Bosschet, “Comparison of fuel cell hybrid propulsion topology with super-capacitor,” in Proc. IEEE EPE-PEMC, 2006, pp. 501-505.
    [42] 蔡宏群,以微控器為基礎之單相交流穩壓器研製,大同大學電機工程研究所碩士論文,民國98年1月。
    [43] 鄧弘緯,以DSP控制之AC-DC雙向電能轉換器,國立成功大學電機工程學系碩士論文,民國100年6月。

    下載圖示 校內:2019-08-22公開
    校外:2019-08-22公開
    QR CODE