簡易檢索 / 詳目顯示

研究生: 廖俊杰
Liau, Jiun-Jie
論文名稱: 具位階變換背景校正之4-Bit 1GSPS快閃式類比/數位轉換器
A 4-Bit 1GSPS Flash ADC with Step-Shifted Background Calibration
指導教授: 郭泰豪
Kuo, Tai-Haur
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 88
中文關鍵詞: 位階位移校正快閃式類比數位轉換器
外文關鍵詞: calibration, flash ADC, step‐shifted
相關次數: 點閱:69下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文中描述具有位階變換背景校正技術的四位元互補金氧半快閃式類比數位轉換器。在此系統中,增加了一組比較器及電組切換開關並且利用隨機相位的切換來製造出切換前及切換後兩種狀態。在此兩種狀態對於同一比較器而言為參考電壓偏移1LSB 量值。由於內部比較器會有製程不匹配所產生的偏移問
    題。在切換前和切換後時,輸入信號落於相同溫度計編碼的機率將不相同。然後,利用漣波式計數器電路來計算兩種狀態所產生出來的機率並且藉由數位類比轉換器來將偏移量做消除。在此,漣波式計數器只有輸入信號落於該溫度計編碼時才計數。所以,並非所有計數器都同時在做校正動作。最後,經由一段時間的背景校正,此系統的效能將藉此獲得改善並且維持住。
    這個類比數位轉換器的實現是採用0.13μm,1P8M 互補金氧半混合信號製程,有效面積為0.027mm2。佈局後的模擬結果驗證此類比數位轉換器在輸入信號為435MHz,操作頻率為1GHz 時,具有3.83 位元的有效解析度。整個晶片在1.2 伏特的操作電壓下,消耗5mW 的功率。

    A 4-bit flash ADC with step-shifted background calibration method is proposed in this thesis. This system would increase one comparator, switches for resistor
    ladder and use the random phase generator to generate shifted and non-shifted states. For the same comparator, its reference voltage would shift 1LSB in the two states.
    Because of the offset due to device mismatch, the probability of the input signal hitting into the same thermometer in shifted and non-shifted states would not be the same. Then, the system calculates the probability of the two states by ripple counter and applies the DAC circuit to cancel the offset. The counter would only work
    where the input signal hits in the thermometer code. Therefore, all of the counters wouldn’t work at the same time. Finally, the performance of the system would
    improve and keep after some calibration periods.
    This ADC is fabricated in a 0.13μm 1P8M CMOS process. The active area is only 0.027mm2. The ADC achieves a measured ENOB of 3.83b for a 435MHz input at 1GS/s. The power consumption (including clock buffer and resistor ladder) is 5mW at 1GS/s.

    1. 簡介………………………………………………………………………… 1 1.1 動機…………………………………………………………………… 1 1.2 論文組成……………………………………………………………… 2 2. 高速類比數位轉換器概念………………………………………………… 4 2.1 快閃式類比數位調變器……………………………………………… 4 2.2 二階和子區域類比數位調變器……………………………………… 6 2.3 摺疊類比數位調變器………………………………………………… 8 2.4 管線類比數位調變器………………………………………………… 9 2.5 交叉類比數位調變器………………………………………………... 10 3. 快閃類比數位轉換器錯誤分析…………………………………………… 12 3.1 偏移…………………………………………………………………… 12 3.2 亞穩態和遲滯現象…………………………………………………… 17 3.3 信號相依的比較器延………………………………………………… 19 3.4 抖動…………………………………………………………………… 23 4. 快閃類比數位轉換器設計技術…………………………………………… 25 4.1 自動歸零技術………………………………………………………… 25 4.1.1 自動歸零原理…………………………………………………. 26 4.1.2 自動歸零佈局…………………………………………………. 27 4.1.3 自動歸零佈局…………………………………………………. 28 4.2 平均技術……………………………………………………………… 30 4.2.1 具有偏移縮減的平均網路……………………………………. 32 4.2.2 平均網路的數學推導…………………………………………. 34 b 4.3 內插技術……………………………………………………………… 37 4.4 校正多餘方法…………………………………………………………. 40 4.5 校正偏移方法…………………………………………………………. 44 4.5.1 前景執行校正方法…………………………………………….. 44 4.5.2 背景執行校正方法……………………………………………. 46 5. 電路實現……………………………………………………………………………………………… 53 5.1 四位元高速快閃類比數位轉換器的架構設計…………………………………. 53 5.2 位階位移校正的原理………………………………………………………………………… 54 5.2.1 位階位移技術和比較器的關係……………………………………………… 54 5.2.2 位階位移技術的概念……………………………………………………………… 55 5.2.3 位階位移方法所遇到的特殊情形…………………………….. 57 5.3 比較器電路……………………………………………………………. 59 5.4 調整電路………………………………………………………………. 61 5.5 時間圖表………………………………………………………………. 66 5.6 數位解碼器……………………………………………………………. 69 6. 佈局和結果………………………………………………………………… 72 6.1 基板平面圖和佈局……………………………………………………. 72 6.2 模擬結果………………………………………………………………. 74 6.3 量測問題……………………………………………………………… 81 6.3.1 量測安排…………………………………………………… 81 7. 結論和未來計畫…………………………………………………....... 83 Reference…………………………………………………………………… 85

    [1] K. Uyttenhove et al., “Design techniques and implementation of an 8‐bit
    200‐MS/s interpolation/averaging CMOS A/D converter” IEEE JSSC, vol. 38, no. 3,
    pp. 483‐494, Mar. 2003
    [2] P. Scholtens and M. Vertregt, “A 6b 1.6GSamples/s Flash ADC in 0.18μm CMOS
    using Averaging Termination,” in IEEE ISSCC, pp.168‐169, Feb. 2002
    [3] M. Choi and A. A. Abidi, “A 6‐b 1.3‐Gsamples/s A/D Converter in 0.35μm
    CMOS ,” in IEEE JSSC, vol. 36, no. 12, pp. 1847‐1858,Dec. 2001
    [4] R. C. Taft and M. R. Tursi, “A 100MS/s 8‐b CMOS subranging ADC with Sustained
    Parametric Performance from 3.8V Down to 2.2V,” in IEEE JSSC, vol. 36, no. 3, pp.
    331‐338, Mar. 2001
    [5] K. Sushihara et al., “A 6‐b 800MSample/s CMOS A/D Converter,” in IEEE ISSCC,
    pp. 428‐429, Feb. 2000
    [6] I. Megr and D. Dalton, “A 500‐MSample/s, 6BIT Nyquist‐Rate ADC for Disk‐Drive
    Read‐Channel Applications,” IEEE JSSC, vol. 34, no. 7, pp. 912‐920, Jul. 1999
    [7] Y. Tamba and K. Yamakido, “A CMOS 6b 500MSample/s ADC for a Hard Disk
    Drive Read Channel,” in IEEE ISSCC, pp. 324‐325, Feb. 1999
    [8] K. Yoon, S. Park and W. Kim, “A 6b 500MSample/s CMOS Flash ADC with a
    Background Interpolated Auto‐Zeroing Technique,” in IEEE ISSCC, pp. 326‐327,
    Feb. 1999
    [9] S. Tsukamoto, W. G. Schofield and T. Endo, “A CMOS 6‐b 400‐MSample/s ADC
    with Error Correction,” IEEE JSSC, vol. 33, no. 12, pp. 1937‐1947, Dec 1998
    [10] D. Dalton et al., “A 200‐MSPS 6‐Bit Flash ADC in 0.6‐μm CMOS” IEEE JSSC, vol. 45,
    no. 11, pp. 1433‐1444, Nov. 1998
    [11] S. Tsukamoto et al., “A CMOS 6‐b, 200MSample/s, 3 V‐Supply A/D converter for
    References
    86
    a PRML Read Channel LSI,” IEEE JSSC, vol. 31, no. 11, pp. 1831‐1836, Nov. 1996
    [12] Uyttenhove K, Steyaert MSJ, “Speed‐power‐accuracy tradeoff in high‐speed
    CMOS ADCs,” in IEEE CASII, vol. 49, no. 4, pp. 280‐287, April 2002.
    [13] B. Razavi and B. A. Wooley, ‘‘Design techniques for high‐speed, high resolution
    comparators’’ in IEEE JSSC 27 (12): 1916‐1926, DEC 1992.
    [14] K. Kattmann and J. Barrow, ‘‘A technique for reducing differential nonlinearity
    errors in flash A/D converters,’’ in Proc. IEEE ISSCC, pp. 170‐171, 1991.
    [15] H. Kimura, A. Matuszawa, T. Nakamura, and S. Sawada, ‘‘A 10‐b 300‐MHz
    interpolated‐parallel A/D converter,’’ in IEEE JSSC, vol. 28, pp. 438‐446, April
    1993.
    [16] H. Okada, Y. Hashimoto, K. Sakata, T. Tsukada, and K. Ishibashi, ‘‘Offset
    calibrating comparator array for 1.2‐V, 6‐bit, 4‐Gsample/s flash ADCs using
    0.13‐μm CMOS technology,’’ in Proc. ESSCIRC’03, pp. 711‐714, Sep.2003.
    [17] Y. Tamba and K. Yamakido, ‘‘A CMOS 6b 500MSample/s ADC for hard disk drive
    read channel,’’ in Proc. IEEE ISSCC, pp. 324‐325, Feb. 1999.
    [18] M. P. Flynn, C. Donovan, and L. Sattler, ‘‘Digital calibration incorporating
    redundancy of flash ADCs,’’ in IEEE CASII, Analog Digit. Signal Process., vol. 50,
    no. 5, pp.205‐213, May 2003
    [19] C. C. Huang, J. T. Wu, ‘‘A background comparator calibration technique for flash
    analog‐to‐digital converters’’ in IEEE CASI 52(9): 1732‐1740 SEP 2005.
    [20] C. W. Hsu, “A 6‐Bit Flash A/D Converter with New Design Techniques,” Master
    thesis,NCKU,2002
    [21] 許浚瑋:『具新自動歸零與內插有負阻抗補償之快閃類比/數位轉換器』中華
    民國發明專利已核准,申請案號91118051
    [22] A. G. W. Venes and R. J. van de Plassche, “An 80‐MHz, 80‐mW, 8‐b CMOS Folding
    A/D Converter with Distributed Track‐and‐Hold Preprocessing,” IEEE JSSC, vol. 31,
    no. 12, pp. 1846‐1853, Dec. 1996
    References
    87
    [23] S. H. Lewis et al., “A 10‐b 20‐Msample/s Analog‐to‐Digital Converter,” IEEE JSSC,
    vol. 27, no. 3, pp. 351‐358, Mar. 1992
    [24] N. Kurosawa et al., “Explicit Analysis of Channel Mismatch Effects in
    Time‐Interleaved ADC Systems,” IEEE JSSC, vol. 48, no. 3, pp. 261‐271, Mar. 2001
    [25] K. Poulton, et al., “A 4GSample/s 8b ADC in 0.35μm CMOS” in IEEE ISSCC,
    pp.166‐167, Feb. 2002
    [26] K. Y. Kim, “A 10‐bit, 100MS/s Analog‐to‐Digital Converter in 1‐μm CMOS” Ph.D .
    dissertation, UCLA, 1996
    [27] R. J. V. D. Plassche and P. Baltus, “An 8‐bit 100MHz Full‐Nyquist Analog‐to‐Digital
    Converter,” IEEE JSSC, vol. 23, no. 6, pp. 1334‐1334, Dec. 1988
    [28] S. S. Awad, “Analysis of Accumulated Timing‐Jitter in the Time Domain,” IEEE
    JSSC, vol. 47, no. 1, pp. 69‐73, Feb. 1998
    [29] F. Herzel and B. Razavi, “A Study of Oscillator Jitter Due to Supply and Substrate
    Noise,” IEEE CASII, vol. 46, no. 1, pp. 56‐62, Jan. 1999
    [30] M. Shinagawa, Y. Akazawa and T. Wakimoto, “Jitter Analysis of High‐Speed
    Sampling Systems,” IEEE JSSC, vol. 25, no. 1, pp. 220‐224, Feb. 1992
    [31] B. Razavi and B. A. Wooley, “Design Techniques for High‐Speed, High‐Resolution
    Comparators,” IEEE JSSC, vol. 27, no. 12, pp. 1916‐1926, Dec. 1992
    [32] K. Kattmann and J. Barrow, “A Techniques for Reducing Differential Non‐Linearity
    Errors in Flash A/D Converters,” in IEEE ISSCC, pp. 170‐171, Feb. 1991
    [33] Y. T. Wang, “An 8‐Bit 150‐MHz CMOS A/D Converter,” Ph.D. dissertation, UCLA,
    1999
    [34] M. P. Flynn and D. J. Allstot, “CMOS Folding A/D Converters with Current‐Mode
    Interpolation,” IEEE JSSC, vol. 31, no. 9, pp.1248‐1257, Sep. 1996
    [35] M. P. Flynn and C. Donovan, “Digital Calibration Incorporating Redundancy of
    References
    88
    Flash ADCs” IEEE CASII, vol. 50, no. 5, May. 2003
    [36] S. Park and Y. Palaskas, “A 3.5GS/s 5‐b Flash ADC in 90nm CMOS” IEEE 2006 CICC
    [37] P. M. Figueiredo, J. C. Vital, ‘‘Kickback noise reduction techniques for CMOS
    latched comparators’’ in IEEE CASII, VOL.53
    [38] P. M. Figueiredo, P. Cardoso, A. Lopes, Carlos Fachada, “A 90nm CMOS 1.2V 6b
    1GS/s Two‐Step Subranging ADC”, in IEEE ISSCC, 2006
    [39] G. V. d. Plas, S. Decoutere, S. Donnay, “A 0.16pJ Conversion ‐Step 2.5mW
    1.25GSs 4b ADC in a 90nm Digital CMOS Process”, in IEEE ISSCC, 2006
    [40] C. Sandner, M. Clara, A. Santner, ‘‘A 6‐bit 1.2‐GS/s Low‐Power Flash‐ADC in
    0.13‐um Digital CMOS’’, in IEEE JSSC 2005

    下載圖示 校內:2011-08-05公開
    校外:2011-08-05公開
    QR CODE