| 研究生: |
蘇柏諺 Su, Po-Yen |
|---|---|
| 論文名稱: |
94-GHz GIPD毫米波線性漸進式格柵開槽天線/準八木對數偶極子陣列天線/帶通濾波Yagi天線晶片之研製 Research on 94-GHz GIPD Millimeter Wave On-Chip Linear Taper Grating Slot Antenna/ Quasi- Yagi Log-periodic Dipole Array Antenna /Bandpass-Filtering Yagi-Antenna |
| 指導教授: |
張志文
Chang, Chih-Wen |
| 共同指導教授: |
黃尊禧
Huang, Tzuen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 94-GHz 、W-band 、GIPD天線 、整合式被動元件 、毫米波 、天線晶片 |
| 外文關鍵詞: | 94-GHz, glass-integrated-passive-device (GIPD), Linear Taper Grating Slot Antenna, Qusai-Yagi antenna, filtering antenna, millimeter-wave, on-chip antenna |
| 相關次數: | 點閱:101 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研製之94-GHz毫米波天線晶片皆採用台灣半導體研究中心所提供的AFSC GIPD製程。94-GHz GIPD線性漸進式格柵開槽天線與Balun帶通濾波器之毫米波整合晶片,將漸進線性式開槽天線邊緣做矩形格柵,此結構可降低天線輻射場型的旁波束,使得天線往前輻射的效果更為明顯,再和巴倫帶通濾波器做整合,將三種被動電路(天線、巴倫器、帶通濾波器)整合在同一晶片中,減少RF接收機前端電路面積;94-GHz GIPD準八木對數週期偶極子陣列與Balun帶通濾波器之毫米波整合晶片,加入八木天線(Yagi-antenna)之設計理念,輻射體以三階對數偶極子天線陣列實現,並分別在輻射體之前後端加入引向器和反射器,增強指向性,構成準八木天線,再和巴倫帶通濾波器做整合;94-GHz GIPD帶通濾波Yagi天線,以一段λ/4開路傳輸線和另一段λ/4短路傳輸線耦合和λ/4天線輻射體做整合形成一個二階帶通濾波器,並在輻射體前端加入引向器、後端加入反射器構成八木天線架構,整合天線晶片具有帶通濾波之響應,可在天線輻射之功率增益觀察到通帶兩側具有兩個傳輸零點。模擬數據顯示本論文研製之三種純天線架構之輻射效率皆在79%以上,整合巴倫帶通濾波器後皆在40%以上。製作之天線晶片皆以平面式佈局,減少元件不良率。考量量測時採用on-wafer方式進行測試,本論文研製之天線晶片皆採用共平面波導方式饋入訊號。
This thesis presents the research on 94-GHz millimeter wave (MMW) on-chip antennas, which are fabricated on glass-integrated-passive-device (GIPD) technology. The process is provided by Taiwan Semiconductor Research Institute (TSRI). In 94-GHz GIPD on-chip linear grating taper slot antenna with integrated balun-bandpass filter design, LTSA uses the corrugation structure to reduce the sidelobe pattern. The structure will add rectangular gratings at two sides of LTSA. This work combined three passive components (antenna, balun, bandpass filter) on a single chip, so that it can reduce the circuit size of RF-receiver. In 94-GHz GIPD on-chip quasi- Yagi log-periodic dipole array antenna with integrated balun-bandpass filter design, the driver of quasi-Yagi antenna used the three-order log-periodic dipole array antenna (LPDA). The director and reflector are added in the front and back of the antenna respectively, it can increase the antenna power gain and forming quasi-Yagi antenna structure. This work also combined with balun-bandpass filter. In 94-GHz GIPD bandpass-filtering Yagi-antenna design, a bandpass filter is formed by an open-stub λ/4 microstrip resonator and a short-end λ/4 microstrip resonator. Then, the second-order filter combines with a λ/4 antenna radiator and λ/4 microstrip resonator. Also, this work adds director and reflector in front and back of the antenna respectively. The integration on-chip antenna has filtering response feature, it can be observed that two extra transmission zeros appear at two sides of the center frequency to form a multi-function on-chip antenna.
[1] J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-wave technology for automotive radar sensors in the 77GHz frequency band,” IEEE Trans. Microwave Theory Tech., vol. 60, no. 3, pp. 845-860, Mar. 2012.
[2] A. Arbabian, S. Callender, S. Kang, B. Afshar, J.-C. Chien, and A. Niknejad, “A 90 GHz hybrid switching pulsed-transmitter for medical imaging,” IEEE J. Solid-State Circuits, vol. 45, pp. 2667–2681, Dec. 2010.
[3] S. Hantscher, B. Schlenther, M. Hägelen, S. A. Lang, H. Essen, and A. Tessmann, A. Hülsmann, A. Leuther, M. Schlechtweg, “Security Pre-screening of Moving Persons Using a Rotating Multichannel W-band Radar,” IEEE Trans. Microwave Theory Tech., vol. 60, no. 3, pp. 845-860, Mar. 2012.
[4] IEEE 802.15 Working Group for WPAN. [Online]. Available: http://www.ieee802.org/15
[5] P.J. Guo, and H.R. Chuang, “A 60-GHz Millimeter-wave CMOS RFIC-on-chip Meander-line Planar Inverted-F Antenna for WPAN Applications,” IEEE Antennas and Propag. Society, pp. 1-4, July 2008
[6] H. C. Kuo, H. L. Yue, Y. W. Ou, C. C. Lin and H. R. Chuang, "A 60-GHz CMOS Sub-Harmonic RF Receiver With Integrated On-Chip Artificial-Magnetic-Conductor Yagi Antenna and Balun Bandpass Filter for Very-Short-Range Gigabit Communications," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1681-1691, April 2013.
[7] M. Nafe, A. Syed and A. Shamim, “Gain-Enhanced On-Chip Folded Dipole Antenna Utilizing Artificial Magnetic Conductor at 94 GHz” IEEE Antennas and Wireless Propagation Letters., pp.2844-2847, Sep.2017.
[8] A. Bisognin, D. Titz, F. Ferrero, G. Jacquemod, R. Pilard, F. Gianesello, D. Gloria, P. Brachat, C. Laporte, H. Ezzeddine, and C. Luxey, “PCB Integration of a Vivaldi Antenna on IPD Technology for 60-GHz Communications,” IEEE Antenna and Wireless Propagation Letter., vol. 13, 2014.
[9] T.Y. Lin, T. Chiu, Y.C. Chang, C.P. Hsieh and D.C. Chang, “High-Gain 60-GHz On-Chip PIFA using IPD Technology,” in IEEE International Symposium on Radio-Frequency Integration Technology (RFIT). ,2016
[10] Y. H. Chuang, H. L. Yue, C. Y. Hsu and H. R. Chuang, "A 77-GHz integrated on-chip Yagi antenna with unbalanced-to-balanced bandpass filter using IPD technology," in Asia-Pacific Microwave Conference 2011, Melbourne, VIC, 2011, pp. 449-452.
[11] 蔡凱翔,毫米波寬頻、雙頻帶及極化分集CMOS 射頻晶片嵌入式天線之研製,國立成功大學電腦與通信工程研究所,碩士論文,民國九十九年七月。
[12] 莊詠翔,60-及77-GHz毫米波GIPD射頻晶片天線/濾波天線及CMOS
人造磁導體嵌入式天線之研製,國立成功大學電腦與通信工程研究所,碩士論文,民國一百零一年七月。
[13] 阮文逸,94-及160-GHz毫米波CMOS / IPD射頻晶片天線及94-GHz整合IPD晶片天線之CMOS可升降頻混頻器,國立成功大學電腦與通信工程研究所,碩士論文,民國一百零四年七月。
[14] 王向捷,94-GHz毫米波GIPD晶片天線及60-GHz整合CMOS功率放大器之GIPD韋瓦第晶片天線,國立成功大學電腦與通信工程研究所碩士論文,民國一百零六年七月。
[15] 任耀傑,60-GHz CMOS 低LO功率、低功耗雙平衡式混頻器與94-GHz整合GIPD晶片天線之CMOS可升降頻單端次諧波電阻式混頻器之毫米波射頻前端的研製,國立成功大學電腦與通信工程研究所,碩士論文,民國一百零八年一月。
[16] F. J. Zucker, “Surface – and Leaky-Wave Antennas,” Antenna Engineering Handbook, H. Jasik, Ed. New York: McGraw-Hill, 1961.
[17] P. J. Gibson, “The Vivaldi aerial,” in Proc. 9th European Microw. Conf., March 1979, pp. 101-105.
[18] S. N. Prasad and S. Mahapatra, “A_Novel_MIC_Slot-Line_Antenna,” in Proc. 9th Europeun MicrowuivConf. (Brighton), 1979, pp. 120-124.
[19] K. S. Yngvcsson et al., “Endfire tapered slot antennas on dielectric substrates,” IEEE Trans. Antennas Propagat., vol. AP-33, pp.1392-1400. 1985.
[20] R. Janaswamy and D. H. Schaubert, “Analysis of the tapered slot antennas,” IEEE Trans. Antennas Propag., vol. AP-35, no. 9, pp. 1058-1065, Sep. 1987.
[21] K. S. Yngvesson, T. L. Korzeniowski, Y. S. Kim, E. L. Kollberg and J. F. Johansson, “The tapered slot antenna – a new integrated element for millimeter-wave applications,” IEEE Trans. Microw. Theory Tech., vol. 37, no. 2, Feb. 1989.
[22] S. Sugawara, Y. Maita, K. Adachi, K. Mori and K. Mizuno, “A MM-Wave Tapered Slot Antenna with Improved Radiation Pattern,” in IEEE MTT-S Int. Microw. Symp. Dig., June 1997, pp. 533-536.
[23] C. M. Tsai, S. Y. Lee, and C. C. Tsai, “Performance of a planar filter using a zero-degree feed structure,” IEEE Trans. Microw. Theory Tech., vol. 50, no.10, pp. 2362-2367, Oct. 2002.
[24] A. Bisognin, D. Titz, F. Ferrero, G. Jacquemod, R. Pilard, F. Gianesello, D. Gloria, P. Brachat, C. Laporte, H. Ezzeddine, and C. Luxey, “PCB Integration of a Vivaldi Antenna on IPD Technology for 60-GHz Communications,” IEEE Antenna and Wireless Propagation Letter, vol. 13, 2014.
[25] A.S.A. EI-Hameed, N.Mahmoud, A. B. Abdel-Rahman, A. Allam, and R. K. Pokharel, “A 60-GHz On-Chip Tapered Slot Vivaldi Antenna with Improved Radiation Characteristics,”, in IEEE European Microw. Conf., 2016.
[26] H.C. Wang, C.C. Chou, and H.R. Chuang, “W-Band Millimeter-wave On-chip Log-Periodic Dipole Antenna with Integrated Balun Filter in GIPD Process,”, in IEEE European Micro. Conf.,Sept. 2018, pp.1489-1492
[27] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 3rd ed. New York: Wiley, 2012
[28] Y. Huang, K. Boyle, Antenna from Theory to Practice,1st ed, New York: Wiley, 2008.
[29] R. H. DuHamel and D. E. Isbell, “Broadband logarithmically periodic antenna structures,” IRE National Convention Record, pt. 1, pp. 119-128, March 1957.
[30] C. A. Balanis, Antenna Theory and Design, 3rd ed. New York: Wiley, 2005.
[31] R. Carrel, “The Design of Log-Periodic Dipole Antennas,” IRE Interna. Convention Rec.,Part 1, pp. 61–75, 1961.
[32] P. C. Butson and G. T. Thompson, “A Note on the Calculation of the Gain of Log-Periodic Dipole Antennas,” IEEE Trans. Antennas Propagate., AP-24, pp. 105–106, January 1976
[33] A. Bisogninl, D. Titz, F. Ferrero, C. Luxe, G. Jacquemodl, P. Brachat, C. Laporte, H. Ezzeddine, R. Pilard, F. Gianesello, D. Gloria, “IPD Technology for Passive Circuits and Antennas At Millimeter-Wave Frequencies”, in European Conf. on Antennas Propag , April. 2013, pp. 326-329.
[34] E. Elsaidy, A. Barakat, A. B. Abdel-Rahman, A. Allam, R. K. Pokharel, “Radiation Performance Enhancement of a 60 GHz CMOS Quasi-Yagi Antenna,”, in IEEE 17th Annual Wireless and Microwave Technology Conference, 2016.
[35] C. T. Chuang and S. J. Chung, “A Compact Printed Filtering Antenna Using a Ground-Intruded Coupled Line Resonator,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 10, pp. 3630-3637, Oct. 2011.
[36] C. T. Chuang and S. J. Chung, “New printed filtering antenna with selectivity enhancement,” in European Microwave Conference, Rome, 2009 , pp. 747-750.
[37] D. M. Pozar, Microwave Engineering, 4th ed. John Wiley & Sons, Inc., 2012.
[38] A. Bronner, F. Schwarze and F. Ellinger “60 GHz On-Chip BiCMOS Bow-Tie Antenna,” IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Oct. 2018.