簡易檢索 / 詳目顯示

研究生: 黃鴻凱
Huang, Hong-kai
論文名稱: 保全防災機器人團隊之感測融合系統與行為策略的設計與實現
Sensor Fusion and Behavior Strategies for Surveillance and Security Robot Team
指導教授: 李祖聖
Li., Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 91
中文關鍵詞: 保全防災機器人感測融合系統
外文關鍵詞: Security Robot, Sensor Fusion
相關次數: 點閱:101下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討保全防災機器人團隊之感測融合與行為策略的研究。保全防災機器人團隊是由三隻以上的機器人構成,這三隻機器人所構成的巡邏網對於保全防災有更好的效果。機器人利用視覺、超音波、火災感測與RFID定位系統達成保全巡邏與災害偵測的目的,藉由無線網路系統將機器人所獲得的資訊共享以便更加快速且確實地了解全區的情況,利用機器人身上的全方位移動系統使得移動較以往來得迅速並且縮短到達目的地所需要的時間,機器人更搭載有自動充電系統讓保全防災的工作可以一天24小時從不間斷。整合每項系統資訊且決定執行的先後順序使得機器人團隊能夠完成各種任務,例如,在巡邏的過程中以全方位移動的方式避開路上的障礙物,當發現火災時利用RFID系統得知目前位置再將火災警報透過無線網路傳送給監控中心,一但機器人處於低電量的狀態則會進行自動充電行為。最後,以實驗來驗證所設計之保全防災機器人團隊之感測融合與行為策略的可行性及實用性。

    This thesis mainly covers the study of sensor fusion and behavior strategies for surveillance and security robot teams. The team consists of three robots, and is more effective and complete than one robot in surveillance and security. We arrive at the goal of surveillance and security at the robot mount the vision unit, ultrasonic unit, fire-detecting module, and self-location unit. The robot team shares the environmental information with one another through a wireless communication system. The robot can move faster and reduce the time using an omni-directional wheel. The robot team can work 24 hours by an automatic power recharge system. Sensor fusion and behavior strategies make robots complete the mission. The robot avoids an obstacle by fuzzy logic controller (FLC). We use an emergency decision algorithm (EDA) to detect accidents and present a path planning algorithm (PPA) for periodic patrol behavior. Each robot can avoid an obstacle by an omni-directional move in the patrol process, detect a fire, and confirm the location using an RFID system, transmit the alert to a web-control center through a wireless communication system, and recharge the power autonomously. Finally, the efficiency and feasibility of the proposed system are demonstrated by practical experiments.

    Contents Abstract I Acknowledgment III Contents IV List of Figures VII List of Tables XI Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 2 Chapter 2. Hardware Architecture of the Surveillance and Security Robot Team 4 2.1 Introduction 4 2.2 Hardware Specification of the Surveillance and Security Robot Team 5 2.2.1 The Mechanism of the Surveillance and Security Robot 5 2.2.2 The CCD Camera 7 2.2.3 Ultrasonic Sensor Module 7 2.2.4 Fire sensors 8 2.2.5 RFID system 9 2.2.6 Electric compass 12 2.2.7 Infrared sensor 13 2.2.8 Wireless Communication System 14 2.2.9 The Driver and DC motor 15 2.2.10 Omni-directional Wheel 17 2.2.11 Battery Module and Power Circuit Board 17 2.2.12 Nios Embedded System Development Board 18 2.2.13 Notebook computer 19 2.2.14 Develop Software 20 2.3 Summary 22 Chapter 3. Sensor Fusion and Behavior Strategies 23 3.1 Introduction 23 3.2 Overview of the Vision System 25 3.3 Overview of the Omni-directional Wheel System 27 3.4 Overview of the Wireless Communication System 28 3.5 Overview of the Ultrasonic Sensing System 30 3.5.1 The Moving Pattern of the Omni-directional Wheel 30 3.5.2 The Arrangement of the Ultrasonic Sensors System 31 3.5.3 Firing Interval of the Ultrasonic Sensors System 32 3.5.4 Fuzzy Avoiding-Obstacle Controller Design 35 3.6 Overview of the Fire Sensors System 47 3.6.1 The Causes of the Fire Accident 47 3.6.2 The Circuit of the Fire Sensors 48 3.6.3 Accident judgment 51 3.7 Overview of the RFID System 53 3.7.1 The Communication of RFID system 53 3.7.2 The Identification of Family Members 54 3.7.3 The Arrangement of Landmark RFID Tag 55 3.7.4 The Strategy of Patrol Behavior 56 3.7.5 The Structure of Building 57 3.8 Overview of the Electric Compass and Infrared Sensor 63 3.8.1 Electric Compass Function 63 3.8.2 Infrared Sensor Function 63 3.9 Periodic Patrol Behavior 66 3.10 Emergency Action 72 3.11 Automatic Recharge Behavior 73 3.12 Summary 75 Chapter 4. Experimental Results 76 4.1 Introduction 76 4.2 Operative Interface 77 4.3 Experiment Result of Avoid Obstacle 78 4.4 Experiment Result of Detect Fire Accident 78 4.5 Experiment Result of Change Direction 78 4.6 Experiment Result of Human Identification 79 4.7 Experiment Result of Automatic recharge behavior 79 Chapter 5. Conclusion and Future Works 85 5.1 Conclusion 85 5.2 Future Works 86 References 87 Biography 91

    References
    [1]http://www.ifr.org/
    [2]http://www.alsok.co.jp/
    [3]http://www.tmsuk.co.jp
    [4]http://www.secom.co.jp/
    [5]http://www.drrobot.com/
    [6]R.C. Luo and K.L. Su, “Autonomous fire-detection system using adaptive sensory fusion for intelligent security robot,”, IEEE/ASME Transactions on Mechatronics, Volume 12, Issue 3, pp. 274 - 281, June 2007.
    [7]D. Zeng, C. Xie and X. Li, “Design and implementation of a security and patrol robot system,” in Proc. IEEE International Conference on Mechatronics and Automation, Volume 4, pp. 1745 - 1749, 2005.
    [8]http://www.logitech.com/index.cfm/webcam_communications/webcams/&cl=tw,zh
    [9]http://www.summitco.com.tw/index_tai.php
    [10]Datasheet: TDCM3 digital compass module, Topteam Technology CO.,Ltd.,2002.
    [11]http://www.altera.com/
    [12]Q. Liu, Y. G. Lu and C. X. Xie, “Fuzzy obstacle-avoiding controller of autonomous mobile robot optimized by genetic algorithm under multi-obstacles environment,” in Proc. The Sixth World Congress on Intelligent Control and Automation, Volume 1, pp. 3255 - 3259, 2006.
    [13]E. M. Joo and C. Deng, “Obstacle avoidance of a mobile robot using hybrid learning approach,” IEEE Transactions on Industrial Electronics, Volume 52, pp. 898 - 905, June 2005.
    [14]R. C. Luo, T. Y. Lin, T. Y. Hsu and P. K. Wang, “Multisensor controlled obstacle avoidance and navigation of intelligent security robot,” in Proc. IEEE International Conference on Industrial Electronics, pp. 1827 - 1832, Nov 2005.
    [15]S. X. Yang and H. Li, “An autonomous mobile robot with fuzzy obstacle avoidance behaviors and a visual landmark recognition system,” in Proc. the 7th International Conference on Control, Automation, Robotics and Vision, Volume 3, pp. 1579 – 1584, Dec. 2002.
    [16]H. Seraji and A. Howard, “Behavior-based robot navigation on challenging terrain: A fuzzy logic approach,” IEEE Transactions on Robotics and Automation, Volume 18, Issue 3, pp. 308 - 321, June 2002.
    [17]A. C. R. Alves and H. C. Junior, ”Mobile ultrasonic sensing in mobile robot,” in Proc. IEEE the 28th Annual Conference of the IECON, Volume 4, pp. 2599 - 2604, Nov. 2002.
    [18]H. Roth and K. Schilling, “Navigation and docking manoeuvres of mobile robots in industrial environments,” in Proc. the 24th Annual Conference of the IEEE, Volume 4, pp. 2458 - 2462, Sept. 1998.
    [19]K. Umeda, J. Ota and H. Kimura, “Fusion of multiple ultrasonic sensor data and imagery data for measuring moving obstacle's motion,” in Proc. IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 742 - 748, 1996.
    [20]W.L. Xu and S.K. Tso, “Real-time self-reaction of a mobile robot in unstructured environments using fuzzy reasoning,” Engineering Applications of Artificial Intelligence, Volume 9, Issue 5, pp. 475 - 485, October 1996.
    [21]A. Stentz and M. Hebert, “A complete navigation system for goal acquisition in unknown environments,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), Volume 1, Pittsburgh, PA, pp. 425 - 432, 1995.
    [22]R. C. Luo, K. L. Su, and K. H. Tsai, “Intelligent security robot fire detection system using adaptive sensory fusion method,” in Proc. IEEE Int. Conf. Int. Electron. Soc., pp. 2663 - 2668, 2002.
    [23]R. C. Luo, K. L. Su, and K. H. Tsai, “Fire detection and isolation for intelligent building system using adaptive sensory fusion method,” in Proc. IEEE Int. Conf. Robot. Autom., pp. 1777 - 1781, 2002.
    [24]陳正中,居家保全機器人之防災與運動控制系統之設計與實現,國立成功大學電機系碩士論文,2003。
    [25]S. Jia, E. Shang, T. Abe and K. Takase, “Localization of mobile robot with RFID technology and stereo vision,” in Proc. the 2006 IEEE International Conference on Mechatronics and Automation, pp. 508 - 513, June 2006.
    [26]H. Chae and K. Han, “Combination of RFID and vision for mobile robot localization,” Intelligent Sensors, Sensor Networks and Information Processing Conference, in Proc. the 2005 International Conference, pp. 75 - 80, Dec. 2005.

    [27]T. M.Marin and T. Duckett, “Robot docking by reinforcement learning in a visual servoing framework,” in Proc. IEEE Conference on Robotics, Automation and Mechatronics, Volume 1, pp. 159 - 164, Dec. 2004.
    [28]D. Hahnel, W. Burgard, D. Fox, K. Fishkin and M. Philipose, “Mapping and localization with RFID technology,” in Proc. IEEE International Conference on Robotics and Automation, Volume 1, pp. 1015 - 1020, 2004.
    [29]K. Yamano, K. Tanaka, M. Hirayama, E .Kondo, Y. Kimuro and M. Matsumoto, “Self-localization of mobile robots with RFID system by using support vector machine,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Volume 4, pp. 3756 - 3761, 2004.
    [30]T. Tsukiyama, “Navigation system for mobile robots using RFID tags,” in Proc. the International Conference on Advanced Robotics, 2003.
    [31]T. Tsukiyama, “Global Navigation System with RFID Tags.” Pros. SPIE 4573, pp. 256 - 264, 2002.
    [32]G. Dissanayake, H. Durrant-Whyte, and T. Bailey, “A computationally efficient solution to the simultaneous localization and map building (SLAM) problem,” Working notes ICRA’2000 Workshop W4: Mobile Robot Navigation and Mapping, April 2000.
    [33]T. Hasegawa and K. Murakami, “Sensor network for intelligent robot in daily human life,” The 1st International Forum on Strategic Technology, pp. 63 - 67, 2006
    [34]O. Kubitz, M. O. Berger, M. Perlick, and R. Dumoulin, “Application of radio frequency identification devices to support navigation of autonomous mobile robots,” IEEE 47th Vehicular Technology Conference, Volume 1, pp. 126 - 130 1997.
    [35]R. C. Luo, C. T. Liao, K. L. Su and K. C. Lin, “Automatic docking and recharging system for autonomous security robot,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2953 - 2958, 2005.
    [36]R.C. Luo, C.T. Liao and K.C. Lin, “Vision-based docking for automatic security robot power recharging,” Advanced Robotics and its Social Impacts, IEEE Workshop, pp. 214 - 219, June 2005.
    [37]M. C. Silverman, D. Nies, B. Jung, G. S. Sukhatme, “Staying alive: a docking station for autonomous robot recharging,” in Proc. IEEE International Conference on Robotics and Automation, Volume 1, pp. 1050 - 1055, 2002.
    [38]Y. Hada and S. Yuta, “Robust navigation and battery re-charging system for long term activity of autonomous mobile robot,” in Proc. of the 9th International Conference on Advanced Robotics, pp. 297-302, 1999.
    [39]L. A. Zadeh, “Fuzzy Algorithm,” Information Control, Volume 12, pp. 94 - 102, 1968.
    [40]L. A. Zadeh, “Fuzzy Sets,” Information Control, Volume 8, pp. 338 - 353, 1965.
    [41]http://www.nfa.goc.tw

    下載圖示 校內:2009-07-18公開
    校外:2009-07-18公開
    QR CODE