| 研究生: |
黃聰憲 Huang, Tsung-Shian |
|---|---|
| 論文名稱: |
漏斗式排砂器水流特性及排砂效率之試驗研究 Experimental study on flow characteristics and sediment removal efficiency of vortex-chamber-type sediment extractor |
| 指導教授: |
詹錢登
Jan, Chyan-Deng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 耗水率 、排砂漏斗 、排砂效率 |
| 外文關鍵詞: | water loss rate, sediment removal efficiency, Vortex-chamber-type sediment extractor |
| 相關次數: | 點閱:86 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本試驗最初步設置兩組排砂漏斗( Type A及Type B )對排砂漏斗渦流特性進行觀測,從結果中選擇較佳之Type A進行後續試驗。排砂漏斗渦流特性觀測分析結果說明,渦流中心位置、直徑大小、水面線與表面流速變化受渠槽入流流量、底孔開度與漏斗底坡影響;而水深過深或漏斗幾何型態配置不當,將造成渦流不穩定並增加耗水量;渦流表面流場變化觀測發現,渦流表面流速越近中心越大,而距中心同一位置上表面渦流流速高流量較低流量大。
排砂量效率與排砂濃度效率試驗結果方面,泥砂粒徑與入流流量對排砂量效率與排砂濃度效率影響較大,對泥砂粒徑介於0.15mm~0.59mm有較佳處理能力,排砂效率達90%以上;大於0.3mm的泥砂基本上可完全排除,而低流量條件下之排砂效果優於高流量。由渠槽入流水與底孔出流水含砂濃度比較瞭解,漏斗排砂可排除高含砂濃度水流,有效降低渠槽出流水含砂濃度。在級配粒徑渾水試驗中,其排砂量效率介於90.7%~97.5%之間。而目前試驗條件下水流含砂對耗水率影響有限,整體排砂耗水率則介於15%~25%之間。本研究試驗結果說明,排砂漏斗具有降低渠槽出流水含砂濃度與連續排砂等優點。同時以FLOW-3D軟體模擬實驗之真實流況,發現排砂漏斗內部的導板末端所產生之擾流現象,容易造成細顆粒泥砂隨渠槽出流水排出。未來研究可著重於幾何配置優化等相關研究,以獲得較佳之排砂效果與較低之耗水率。
Firstly, in this experiment two kinds of vortex-chamber-type sediment extractors are set up to observe the vortex characteristic and choose the better Type A for carrying on the follow-up test from the result. The analysis result and characteristics of vortex-chamber-type sediment extractor demonstrate that the change of position of vortex centre, diameters of vortex, above water line of vortex and vortex surface velocity are influenced by inflow and the size of bottom orifice. If the depth of water is so great, or the funnel geometry type is disposed improperly, this will lead to the vortex swirled instability and the increase of water loss. From the observation of velocity changes on the vortex surface, we can find that the velocity of vortex flow is greater near the center. However, velocity of the surface vortex at a higher discharge is greater than that at a lower discharge.
From the result of sediment removal efficiency and test of the removal efficiency of sediment concentration, the size of sediment and the inflow have the greatest effect. For the sediment with the size between 0.15 mm and 0.59 mm, the removal efficiency is more than 90%. The silt particle greater than 0.3mm can be removed totally. The sediment removal efficiency is superior in the high flow in condition as opposed to the low flow condition. In the test, we can also understand that the vortex chamber can be removed of the flow under high sediment concentrations by comparing channel inflow and orifice outflow of sediment concentration. This reduces the sediment concentration of channel outflow. In the muddy water experiment of graded sediment, the removal efficiency is between 90.7% and 97.5%. In addition, under the present experimental condition, the flow with the sediment limits the water loss rate. For the whole study, the water loss rate of sediment removal is between 15% and 25%. In this study, the result of the vortex chamber experiment proves that the vortex-chamber-type sediment extractor can reduce the sediment concentration of inlet channel and remove sediment continuously. In addition, the FLOW-3D software is used to simulate the real flow-field in this experiment. It is found that the appearance of turbulent flow induced by the end of deflector inside the vortex chamber type extractor to makes sediment move out easily. In the future, we can focus on study of experimental geometry in order to obtain better sediment removal result and lower water loss rate.
1. Athar, M., Kothyari, U. C., and Garde, R. J. (2002). ‘‘Sediment Removal Efficiency of Vortex Chamber Type Sediment Extractor’’ Journal of Hydraulic Engineering, ASCE, 128(12), 1051–1059.
2. Athar, M., Kothyari, U. C., and Garde, R. J. (2003), “Distribution of sediment concentration in the vortex chamber type sediment extractor.” International Journal of Hydraulic Research, 41(4), 427-438.
3. Craig, W., Somerton, and Wood, P. (1988). ‘‘Effect of walls in modeling flow through porous media.’’ Journal of Hydraulic Engineering, ASCE, 114(12),1431–1447.
4. Garde, R. J., and Ranga Raju, K. G. (2000). “Mechanics of sediment transportation and alluvial stream problems.” 3rd Ed., New Age International, New Delhi, India.
5. Julien, P. Y. (1986). ‘‘Concentration of very fine silts in a steady vortex.’’ Journal of Hydraulic Research, 24(4), 255-264.
6. Kothyari, U. C., Pande, P. K., and Gahlot, A. K.(1994). ‘‘Design for tunnel-type sediment excluder.’’ Journal of Irrigation and Drainage Engineering, 1201, 36–47.
7. Keshavarzi, A., and Gheisi, A. (2006), “Three-dimensional fractal scaling of bursting events and their transition probability near the bed of vortex chamber.” Chas, Solitons & Fractals.
8. Leith, D., and Licht, W. (1972). ‘‘The collection efficiency of cyclone type particle collectors, a new theoretical approach.’’ AIChE Symp. Ser., 68 (126), 196–206.
9. Paul, T. C., Sayal, S. K., Sakhuja, V. S., and Dhillon, G. S. (1991). ‘‘Vortex-settling basin design considerations.’’ Journal of Hydraulic Engineering, ASCE, 117(2), 172–189.
10. Ranga Raju, K.G., Kothyari, U. C., Srivastav, S., and Saxena, M. (1999). “Sediment removal efficiency of settling basins.” Journal of Irrigation and Drainage Engineering, ASCE, 125(5), 308-314.
11. Wang, S. J., Zhou, Z., Hou, J., and Qiu, X.Y. (2002), “Flow field characteristics of the sand funnel and its mechanics of sediment transport.” Journal of Hydrodynamics, Ser. B (3), 130-134.
12. 王順久、周著、侯杰(2000),『漏斗式全沙排沙工程試驗研究及其應用』,泥沙研究,第3期,第104-109頁,中國大陸。
13. 王順久、周著、侯杰、王忠(2000),『漏斗式全沙排砂設施模型試驗及原型觀測』,水力發電,第7期,中國大陸。
14. 王順久、周著、侯杰、邱秀云(2002),『排沙漏斗的水流特性試驗研究及其工程應用』,水利學報,第七期,第104-109頁,中國大陸。
15. 王升貴、陳文梅、褚良銀、王志斌(2005),『水力旋流器分離理論的研究與發展趨勢』,流體機械,第33卷,第7期,第36-40頁,中國大陸。
16. 宋德仁(2001),『沈砂池囚砂效率之研究』,國立交通大學土木工程學系碩士論文。
17. 李琳、牧振傳、周著(2004),『漏斗式全沙排沙技術在陝西東雷抽黃灌區泥沙治理的成功實踐』,新疆農業大學學報,第27卷,第3期,第46~51頁,中國大陸。
18. 林致立(2004),『集集攔河堰沉沙池水理及處理效能之研究』,國立中興大學水土保持學系碩士論文。
19. 吳東雄、劉家盛(2005) ,『艾利颱風對石門水庫集水區崩塌及濁度變化之影響』,水利期刊,第15期。
20. 周著、邱秀云、侯杰、王順久(2001),『漏斗式全沙排沙技術及其應用』,水科學進展,第12卷,第1期,中國大陸。
21. 侯杰、王順久、周著(2000),『全沙排沙漏斗渾水流場特性及輸沙規律』,泥沙研究,第6期,第63-67頁,中國大陸。
22. 唐毅、周著、吳持恭(2002),『排沙漏斗三維渦流流場脈動特性研究』,水利學報,第二期,中國大陸。
23. 張建民、楊永全(2001),『懸板在低水頭引水防沙工程中的應用』,中國農村水利水電,第4期,中國大陸。
24. 張強、殷曉曦、殷大鼎(2003),『渦管排砂箱型沈砂池的試驗研究』,石河子大學學報,第7卷,第3期,中國大陸。
25. 彭合營(2004),『甲仙攔河堰運轉效率之研究』,國立屏東科技大學土木工程系碩士論文。
26. 賴伯勳、鍾朝恭、王瑋(2005),『颱風期間石門水庫濁度處理與應變措施』,水利期刊,第15期。
27. 劉善均、張建民、曲景學、伊曉林(2003),『排砂漏斗優化及輸砂特性試驗研究』,四川大學學報,第35捲,第四期,中國大陸。
28. 譚冬初(1999),『排砂漏斗之水力分析計算』,水動力學研究與發展,第14卷,第2期,中國大陸。