| 研究生: |
劉尚迪 Liu, Shang-Ti |
|---|---|
| 論文名稱: |
具對位式三相感應耦合結構之電動車用非接觸式充電槳系統 Contactless Charging Paddle System with Aligned Three-Phase Inductive Coupled Structure for Electric Vehicles |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 非接觸 、電動車 、充電槳 |
| 外文關鍵詞: | contactless, electric vehicle, charging paddle |
| 相關次數: | 點閱:94 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在設計和實現具高效率之電動車用感應充電槳,並參照SAE J-1773感應充電規範與充電建議標準,研製具對位式三相感應耦合結構之電動車用非接觸式充電槳與充電插槽。所提由三相感應耦合結構組成之非接觸式充電槳,與傳統單相感應耦合結構之充電槳不同處,在於感應耦合結構部份係採三相型式,使其能達到磁通均勻分佈,並能提升鐵芯利用率,以建構提供使用者較高安全性與便利性之非接觸式感應充電系統。初、次級側感應結構採三相感應耦合結構,其兩者採對位方式且氣隙3mm規格進行系統電路參數設計,並搭配周邊電路建構整體系統。經由實測驗證,本文所提具三相感應耦合結構之充電槳確具可行性,在氣隙3mm時最高電能傳輸效率為81%。
The purpose of this thesis is to design and implement an efficiency contactless inductive charging paddle. This thesis is aimed at the recommended practice for electric vehicle battery charging using inductive coupling (SAE J-1773). The high-efficiency inductive charging system is proposed for providing the EV users with high security and convenience. Charging paddle and charging receptacle are formed by three-phase inductive coupled structure, so as to improve the core’s utility; both structures adopt position matching method and the air gap 3mm specification to design the system circuit parameter. This electric vehicle’s charging paddle system has proven to be practicable by experiments. The transmission efficiency can reach a maximum of 81 % under 3 mm air-gap.
[1] “SAE electric vehicle inductive coupling recommended practice,” SAE, Draft, 1995.
[2] J. G. Hayes, M. G. Egan, J. M. D. Murphy, S. E. Schulz, and J. T. Hall, “Wide-load-range resonant converter supplying the SAE J-1773 electric vehicle inductive charging interface,” IEEE Trans. Ind. Appl., vol. 35, pp. 884-895, Jul./Aug. 1999.
[3] N. H. Kutkut and K. W. Klontz, “Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler,” in Proc. APEC, 1997, vo1. 2, pp. 841-847.
[4] X. Liu and S. Y. R. Hui, “Simulation study and experimental verification of a universal contactless battery charging platform with localized charging features, ” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2202-2210, Nov. 2007.
[5] S. Raabe, J. T. Boys, and G. A. Covic, “A high power coaxial inductive power transfer pickup,” in Proc. IEEE PESC, 2008, pp.4320-4325.
[6] G. A. Covic, O. H. Stielau, and J. T. Boys, “The design of a contactless energy transfer system for a people mover system,” in Proc. IEEE PowerCon., 2000, pp. 79-84.
[7] K. Finkenzeller, RFID HANDBOOK. 2nd ed., Wiley, 2003.
[8] S. Y. Hui and W. C. Ho, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, 2005.
[9] X. Liu, P. W. Chan, and S. Y. Hui, “Finite element simulation of a universal contactless battery charging platform,” in Proc. IEEE APEC, 2005, pp. 1927-1932.
[10] J. A. Taylor, Z. N. Low, J. Casanova, and J. Lin, “A wireless power station for laptop computers,” in Proc. IEEE Radio and Wireless Symposium, 2010, pp. 625-628.
[11] T. Yazaki, I. Morita, and H. Tanaka, “Demonstration of optical wireless USB 2.0 system with wireless power transfer,” in Proc. IEEE Int. Conf. Consum. Electron., 2011, pp. 11-12.
[12] B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, “Design and implementation of low profile contactless battery charger using planar printed circuit board windings as energy transfer device,” IEEE Trans. Ind. Electron., vol. 51, no.1, pp. 140-147, 2004.
[13] Y. Jang and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, 2003.
[14] W. Lim, J. Nho, B. Choi, and T. Ahn, “Low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” in Proc. IEEE PESC, 2002, pp. 579-584.
[15] C. G. Kim, D. H. Seo, J. S. You, J. H. Park, and B. H. Cho, “Design of a contactless battery charger for cellular phone,” in Proc. IEEE APEC, 2000, pp. 769-773.
[16] R. Radys, J. Hall, J. Hayes, and G. Skutt, “Optimizing AC and DC winding losses in ultra-compact, high frequency, high power transformers, ” in Proc. IEEE APEC, 1999, pp. 14-18.
[17] R. Laouamer, M. Brunello, J. P. Ferrieux, O. Normand, and N. Buchheit, “A multi-resonant converter for non-contact charging with electromagnetic coupling,” in Proc. IEEE IECON, 1997, vol. 3, pp. 792-797.
[18] J. Hayes, J. Hall, M. Eqan, and J. Murphy, “Full-bridre, series-resonant converter supplying the SAE J-1773 electric vehicle inductive charging interface,” in Proc. IEEE PESC, 1996, vol. 2, pp. 1913-1918.
[19] Y. Wu, L. Yan, and S. Xu, “A new contactless power delivery system,” in Proc. IEEE Int. Conf. Electrical Machines and Systems, 2003, pp. 253-256.
[20] J. G. Hayes and M. G. Egan, “A comparative study of phase-shift frequency and hybrid control of the series resonant converter supplying the electric vehicle inductive charging Interface,” in Proc. IEEE APEC, 1999, pp. 450-457.
[21] H. Sakamoto, K. Harada, S. Washimiya, K. Takehara, Y. Matsuo, and F, Nakao, “Large air-gap coupler for inductive charger [for electric vehicles],” IEEE Trans. Magn., vol. 35, no. 5, pp. 3526-3528, 1999.
[22] H. Sakamoto, K. Harada, S. Washimiya, and Y. Matstuda, “A non-contact charge system of an electric vehicle in the next generation,” in Proc. IEEE Magn., 2003, p. ER-16.
[23] A. Wobben, “Wind power installation with contactless power transmitter,” U.S. Patent 7,098,551 B2, 2006.
[24] Y. Bolotinsky, A. Rubshtein, M. Savulkin, and E. Adar, “Method for manufacturing a three-phase transformer,” U.S. Patent 6,880,228 B2, 2005.
[25] H. Aoki, Y. Maeda, and H. Hama, “Three-phase current transformer,” U.S. Patent 6,680,665 B2, 2004.
[26] Y. Bolotinsky, A. Rubshtein, and M. Savulkin, “Three-phase transformer,” U.S. Patent 6,792,666 B1, 2004.
[27] Y. Koike, K. D. Conroy, and P. T. Nguyen, “Charger coupling,” U.S. Patent 6,373,221 B2, 2002.
[28] M. Kaneko, “Charging receptable,” U.S. Patent 6,351,098 B1, 2002.
[29] T. Hyogo, “Charging paddle,” U.S. Patent 6,297,614 B2, 2001.
[30] P. Sergeant and A. Bossche, “Inductive coupler for contactless power transmission,” IEEE Trans. Ind. Appl., vol. 2, no.1 pp.1-7, 2008.
[31] A. Kawamura, G. Kuroda, and C. Zhu, “Experimental result on contact-less power transmission system for the high-speed trains,” in Proc. IEEE PESC, 2007, pp. 2779-2784.
[32] S. Raabe, G. A. J. Elliott, G. A. Covic, and J. T. Boys, “A quadrature pickup for inductive power transfer systems,” in Proc. IEEE Int. Conf. Industrial Electronics and Applications, 2007, pp.68-73.
[33] F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, and T. Satoh, “Stable energy transmission to moving loads utilizing new CLPS,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5034-5036, 1996.
[34] J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, 2006.
[35] G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green, and J. T. Boys, “The design of a contact-less energy transfer system for a people mover system,” in Proc. IEEE PowerCon., 2000, vol. 1, pp. 79-84.
[36] S. Raabe, J. T. Boys, and G. A. Covic, “A high power coaxial inductive power transfer pickup,” in Proc. IEEE PESC, 2008, pp. 4320-4325.
[37] D. Kacprzak, G. A. Covic, and J. T. Boys, “An improved magnetic design for inductively coupled power transfer system pickups,” in Proc. IPEC’05, 2005, vol. 2, pp. 1133-1136.
[38] E. S. Kim, H. K. Lee, Y. S. Kong, and Y. H. Kim, “Operating characteristics in LCLC resonant converter with a low coupling transformer,” in Proc. IEEE APEC, 2007, pp. 1651-1656.
[39] S. L. Ho, J. Wang, W. N. Fu, and S. Mingui, “A comparative study between novel witricity and traditional inductive magnetic coupling in wireless charging,” IEEE Trans. Magn., vol. 47, no. 5, pp. 1522-1525, 2011.
[40] J. Wang, S. L. Ho, W. N. Fu, and S. Mingui, “A comparative study between witricity and traditional inductive coupling in wireless energy transmission,” in Proc. IEEE Int. Conf. Electromagnetic Field Computation, 2010, pp. 1.
[41] C. J. Chen, T. H. Chu, C. L. Lin, and Z. C. Jou, “A study of loosely coupled coils for wireless power transfer,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 57, no. 7, pp. 536-540, 2010.
[42] H. Hirayama, Y. Okuyama, N. Kikuma, and K. Sakakibara, “An consideration on equivalent circuit of wireless power transmission,” in Proc. IEEE Antenna Technology and Applied Electromagnetics & the American Electromagnetics Conference, 2010, pp. 1-4.
[43] Y. Zou, X. Huang, L. Tan, Y. Bai, and J. Zhang, “Current research situation and developing tendency about wireless power transmission,” in Proc. IEEE ICECE, 2010, pp. 3507-3511.
[44] T. Imura, “Study on maximum air-gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit,” in Proc. IEEE ISIE, 2010, pp. 3664-3669.
[45] 粘孝先,軟磁錳鋅鐵氧鐵芯鐵損之分析,國立成功大學電機工程學系博士論文,2006。
[46] R. Severns, E. Yeow, G. Woody, J. Hall and J. Hayes, “An ultra-compact transformer for a 100 W to 120 kW inductive coupler for electric vehicle battery charging,” in Proc. APEC, 1996, vo1. 1, pp. 32-38.
[47] A. W. Lotfi, P. M. Gradzki, and F. C. Lee, “Proximity effects in coils for high frequency power applications,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2169-2171, 1992.
[48] A. Schellmanns, P. Fouassier, J. P. Keradec, and J. L. Schanen, “Equivalent circuits for transformers based on one-dimensional propagation: accounting for multilayer structure of windings and ferrite losses,” IEEE Trans. Magn., vol. 36, no. 5, pp. 3778-3784, 2000.
[49] J. T. Boys, G. A. Covic, and A. W. Green, “Stability and control of inductively coupled power transfer systems,” in Proc. IEE EPA’00, 2000, vol. 147, no. 1, pp. 37-43.
[50] H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Model for a three-phase contactless power transfer system,”IEEE Trans. Power Electronics., vol. 26, pp. 2676-2687, 2011.
[51] O. H. Stielau and G. A. Covic, “Design of loosely coupled inductive power transfer systems,” in Proc. PowerCon., 2000, vol. 1, pp. 85-90.
[52] F. Zhou, M. H. Cui, T. Liu, T. Han, and Z. A. Wang, “Efficiency and frequency bifurcating phenomenon research of series resonance converter applied in a contact-less power transmission system,” in Proc. IEEE PESC, 2006, pp. 1-6.
[53] X. Liu, W. M. Ng, C. K. Lee, and S. Y. Hui, “Optimal operation of contactless transformers with resonance in secondary circuits,” in Proc. IEEE APEC, 2008, pp. 645-650.
[54] Y. H. Chao, J. J. Shieh, C. T. Pan, and W. C. Shen, “A closed-form oriented compensator analysis for series-parallel loosely coupled inductive power transfer systems,” in Proc. IEEE PESC, 2007, pp. 1215-1220
[55] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 1 pp. 148-157, 2004.
[56] 李嘉猷、劉尚迪、沈紘宇,“具三相感應耦合結構之非接觸式感應充電槳,” 中華民國第三十二屆電力工程研討會論文集,2011年,1381-1385頁