| 研究生: |
許誠顯 Hsu, Cheng-Hsien |
|---|---|
| 論文名稱: |
無轉矩感測器技術於下肢力輔助控制架構之探討 Study on torque sensor-less technique for control of a lower limb power assisting scheme |
| 指導教授: |
鄭銘揚
Cheng, Ming-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 轉矩觀測器 、下肢力輔助裝置 、無力量感測器技術 |
| 外文關鍵詞: | Torque Observer, Lower Limb Power Assisting Device, Force sensor-less technology |
| 相關次數: | 點閱:108 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
由於全球人口老化日漸嚴重與醫護人員短缺,使得助力裝置的需求
不斷增加。環顧目前的助力裝置,大多需要透過力量感測器量測使用者
與輔助機構之間的接觸力(Reaction Force)作為助力大小的依據。然而,
力量感測器具有成本較高、量測點限制、容易受到雜訊干擾以及溫度變
化所產生量測資訊飄移等缺點。因此,若能夠利用無轉矩感測器技術來
取代力量感測器,不但可以解決上述之缺點與提升力輔助之效能,更能
降低輔助裝置的建構成本。有鑑於此,本論文之主要目的為發展一轉矩
觀測器(VDOB),用以估測使用者對力輔助機構所施加之負載轉矩。並
藉由力輔助機構上之伺服馬達施加一輔助力,進而完成力輔助之目的。
最後透過自行設計之下肢力輔助裝置進行助力實驗,藉以驗證本論文所
提之無轉矩感測器技術確實能提供使用者所需之輔助力。
關鍵字:轉矩觀測器、下肢力輔助裝置、無力量感測器技術
ABSTRACT
Due to the aging of the world’s population and the shortages of health
care providers, there is a great demand for the power assisting device. Most
of the current power assisting devices require force sensors to measure the
reaction force between users and the devices to decide how much the
assisting force is. However, there are some disadvantages in force sensors:
the high cost, the limited measurement points, the sensitivity to noise and the
drift in measurement due to the change in temperature. Consequently, if the
force sensors can be replaced by the torque sensor-less technology, not only
can we eliminate the drawbacks mentioned above and improve the
effectiveness of force assisting, but also cut down the cost of the assisting
device. To this extent, the main purpose of this thesis is to develop a torque
observer (VDOB) to estimate the load torque on the power assisting device
from users, and exert an assisting force by the motor on the assisting device
to accomplish power assisting. In addition, some experiments are conducted
through a self-designed lower limb power assisting device to verify that the
proposed torque sensor-less technology can indeed provide the assisting
force to users.
Keywords: Torque Observer, Lower Limb Power Assisting Device, Force
sensor-less technology
[1] B. Dellon and Y. Matsuka, “Prosthetics, Exoskeletons, and
Rehabilitation,” IEEE Robitics and Automation Magazine, vol. 14,
no.1, pp.30-34, Mar. 2007.
[2] A. Tapus﹐M. Mataric, and B. Scassellati, “Socially Assistive Robotics,”
IEEE Robotics and Automation Magazine﹐vol. 14, no., pp.35-42, Mar.
2007.
[3] K. Yamamoto, K. Hyodo, M. Ishi, T. Matsuo,“Development of power
assisting suit for assisting nurse labor,” JSME International Journal,
Series C: Mechanical Systems, Machine Elements and Manufacturing,
vol. 45, no. 3, pp. 703-711, Sep. 2002.
[4] K. Yamamoto, M. Ishi, H. Noborisaka, and K. Hyodo,“Stand Alone
Wearable Power Assisting Suit-Sensing and Control Systems,” in Proc.
of the 2004 IEEE International Workshop on Robot and Human
Interactive Communication Kurashiki, Okayama Japan, 20-22 Sep. 2004,
pp. 661-666.
[5] H. Kazerooni and R. Steger, “The Berkeley Lower Extremity
Exoskeleton,” Journal of Dynamic Systems, Measurement, and Control,
vol. 128, pp. 14–25, Mar. 2006.
[6] http://bleex.me.berkeley.edu/index.htm, Berkeley Robotics & Human
Engineering Lab, University of California, Berkeley.
[7] J. Ghan, R. Sstger, and H. Kazerooni, “Control and system identification
for the Berkeley lower extremity exoskeleton, ” Advanced Robotics, vol.
20, no. 9, pp. 989–1014﹐2006.
105
[8] R. Steger, S. H. Kim, and H. Kazerooni, “Control Scheme and Networked
Control Architecture for the Berkeley Lower Extremity Exoskeleton,” in
Proc. of the IEEE International Conference on Robotics and Automation,
Orlando﹐Florida, 15-19 May 2006, pp. 3469-3476.
[9] H. Kazerooni, R. Steger, and L. Huang, “Hybrid Control of the Berkeley
Lower Extremity Exoskeleton,” International Journal of Robotics
Research, vol. 25, no. 5-6, pp. 561-573, May 2006.
[10] H. Kazerooni and R. Steger, “The Berkeley Lower Extremity
Exoskeleton,” Journal of Dynamics Systems, Measurement, and Control,
vol. 128, pp.14-25, Mar. 2006.
[11] A. Zoss and H. Kazerooni, ” Design of an electrically actuated lower
extremity exoskeleton, ” Advanced Robotics, vol. 20, no. 9, pp. 967-988,
Mar. 2006.
[12] K. Suzuki, G. Mito, H. Kawamoto, Y. Hasegawa, and Y. Sankai,
“Intention-based walking support for paraplegia patients with Robot Suit
HAL,” Advanced Robotics, vol. 21, no, 12, pp. 1441-1469, Oct. 2007.
[13] T. Murakami, F. Yu, and K. Ohnishi, “Torque Sensor-less Control in
Multidegree-of-Freedom Manipulator,” IEEE Transactions on Industrial
Electronics, vol. 40, no. 2, Apr. 1993.
[14] M. Nakao, K. Ohnishi, and K. Miyachi, “A robust decentralized joint
control based on interference estimation,” in Proc. of IEEE International
Conference on Cons Robotics Automation, Yokohama, Japan, May 1987,
pp. 326-331.
[15] 林文斌,電動自行車之電助力系統開發,碩士論文﹐國立成功大 學電機
工程學系﹐2010.
106
[16] T. Noritsugu and T. Tanaka, “Application of Rubber Artificial Muscle
Manipulator as a Rehabilitation Robot,” IEEE/ASME, Transactions on
Mechatronics, vol. 2, no. 4, Dec. 1997.
[17] Y. Ikeuchi, J. Ashihara﹐Y. Hiki﹐H. Kudoh, and T. Noda, “Walking Assist
Device with Bodyweight Support System,” in Proc. of Intelligent Robots
and Systems﹐IEEE/RSJ International Conference on, Saitama, 10-15 Oct.
2009, pp.4073-4079.
[18] http://corporate.honda.com/innovation/walk-assist/
[19] D.P. Ferris, G.S. Sawicki and M.A. Daley, “A physiologist's perspective
on robotic exoskeletons for human locomotion, ” International Journal of
Humanoid Robotics, Vol. 4, No. 3, pp. 507–528, 2007.
[20] S. M. Cain, K. E. Gordon, and D. P. Ferris, “Locomotor adaptation to a
powered ankle-foot orthosis depends on control method,” Journal of
Neuroengineering and Rehabilitation, vol. 4, pp. 48, 2007.
[21] H. J. Huang and D. P. Ferris., “Neural coupling between upper and lower
limbs during recumbent stepping,” Journal of Applied Physiology, vol.
97, pp. 1299–1308, Oct. 2004.
[22] A. M. Simon, R. B. Gillespie, and D. P. Ferris, “Symmetry-based
resistance as a novel means of lower limb rehabilitation,” Journal of
Biomechanics, vol. 40, pp.1286-1292, 2006.
[23] C. L. Lewis and D. P. Ferris, “Walking with increased ankle pushoff
decreases hip muscle moments,” Journal of Biomechanics, vol. 41, pp.
2082-2089, May 2008.
[24] K. E. Gordon and D. P. Ferris, “Learning to walk with a robotic ankle
exoskeleton,” Journal of Biomechanics, vol. 40, pp. 2636–2644, 2007.
107
[25] G. S. Sawicki and D. P. Ferris, “Powered ankle exoskeletons reveal the
metabolic cost of plantar flexor mechanical work during walking with
longer steps at constant step frequency,” Journal of Experimental
Biology, vol. 212, pp. 21-31, 2008.
[26] http://www.personal.umich.edu/~ferrisdp/hnl.html,Human
Neuromechanics Lab, University of Michigan.
[27] D. J. Rinkensmeyer, C. T. Pang, C. A. Nessler, and C. C. Paninter,
“Web-based telerehabilitation for the upper-extremity after stroke,” IEEE
Transactions on Neural Science and Rehabilitation Engineering, vol. 10,
no. 2, pp. 102-108, 2002.
[28] http://gram.eng.uci.edu/~dreinken/Biolab/biolab.htm#People:,
Biomechatronics Lab , University of California, Irvine.
[29] S.K. Banala, A. Kulpe, and S.K. Agrawal, “A Powered Leg Orthosis for
Gait Rehabilitation of Motor-Impaired Patients,” in Proc. of IEEE
International Conference on Robotics and Automation, Roma, Italy,
10-14 Apr. 2007, pp. 4140-4145.
[30] Agrawal, S.K. and Banala, S.K. and Fattah, A. and Sangwan, V. and
Krishnamoorthy, V. and Scholz, J.P. and Hsu Wei-Li, “Assessment of
motion of a swing leg and gait rehabilitation with a gravity balancing
exoskeleton,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 15, no. 3, pp.410 – 420, Sept. 2007.
[31] K. K. Mankala, S. K. Banala ,and S. K. Agrawal, “Passive Swing
Assistive Exoskeletons for Motor-Incomplete Spinal Cord Injury
Patients,” in Proc. of IEEE International Conference on Robotics and
Automation Roma, Roma, Italy, 10-14 Apr. 2007, pp. 3761-3766.
108
[32] S. K. Agrawal and A. Fattah, “Theory and design of an orthotic device
for full or partial gravity-balancing of a human leg during motion,” IEEE
Transactions on neural systems and rehabilitation engineering, vol. 12,
pp.157 - 165, Jun. 2004.
[33] S. K. Banala, S. K. Agrawal, A. Fattah, V. Krishnamoorthy, W. L. Hsu, J.
Scholz, and K. Rudolph “Gravity Balancing Leg Orthosis And Its
Performance Evaluation,” IEEE Transactions on Robotics, vol. 22, no. 6,
pp. 1228-1239, Dec. 2006.
[34] A. Fattah and S. K. Agrawal, “On the design of a passive orthosis to
gravity balance human legs ,” Journal of Mechanical Design, vol. 127,
pp. 802-808, July 2008.
[35] http://mechsys4.me.udel.edu/research/medical_robotics/ , Mechanical
Systems Lab, University of Delaware.
[36] http://biomech.media.mit.edu/research/pro3_3.htm , Media Lab
Biomechatronics Group, Massachusetts Institute of Technology.
[37] A. M. Dollar and H. Herr, “Lower extremity exoskeletons and active
orthoses: challenges and state-of-the-art, ” IEEE Transactions on
Robotics, vol. 24, no. 1, Feb. 2008.
[38] A. M. Dollar and H. Herr, “Active orthoses for the lower-limbs:
challenges and state of the art,” in Proc. of the 2007 IEEE 10th
International Conference on Rehabilitation Robotics, Noordwijk,
Nertherlands, 13-15 June 2007, pp. 968-977.
[39] J.A. Blaya and H. Herr, “Adaptive control of a variable-impedance
ankle-foot orthosis to assist drop-foot Gait, ”IEEE Transactions on
Neural Systems and Rehabilitation Engineering, vol. 12, no. 1, pp. 24-31,
109
Mar. 2004.
[40] C. J. Walsh, D. Paluska, K. Pasch, W. Grand, A. Valiente, and H. Herr,
“Development of a lightweight, underactuated exoskeleton for
load-carrying augmentation, ”in Proc. of the 2006 IEEE International
Conference on Robotics and Automation Orlando, Orlando, Florida,
15-19 May 2006, pp.3485-3491.
[41] 葉賜旭, “多關節型下肢輔助復健機器人研製研究成果報告”,行政院國
家科學委員會專題研究計畫成果報告, 2008.
[42] 馬仕安 ,膝和髖關節神經復健用機器人之研究, 碩士論文﹐國立成功
大學機械工程學系, 2007.
[43] 吳思穎, 上肢復健機器臨床試驗與改良﹐國立成功大學機械工程學系
碩士論文, 2003.
[44] 潘柏瑋, 中風病患踝關節復健用機器人之研究﹐國立成功大學機械工
程學系碩士論文, 2009.
[45] C. T. Johnson and R. D. Lorenz,”Experimental identification of friction
and its compensation in precise, position controlled mechanisms,” IEEE
Transactions on Industry Applications, vol. 28, vol. 28, pp.1392-1398,
Dec. 1992.
[46] D. Karnopp, "Computer simulation of slip-stick friction in mechanical
dynamic systems," ASME Journal of Dynamic Systems,Measurement,
and Control, vol. 107, pp. 100-103, Mar. 1985.
[47] F. Chen, Y. Yu, and Y. Ge, “Dynamic model and motion control analysis
of the power assist intelligenceleg,” in Proc. of 6th World Congress on
Intelligent Control and Automation, Dalian, China, pp. 6436-6440, Jun.
110
2006.
[48] 劉叡明, 伺服馬達低轉速控制改善之研究, 碩士論文,國立成功大學
電機工程學系, 2008.
[49] 吳仁哲, 伺服控制系統之摩擦力與干擾補償研究, 碩士論文,國立成
功大學電機工程學系﹐2009.
[50] M. C. Tsai, E. C. Tseng, and M. Y. Cheng, " Design of a torque observer
for detecting abnormal load, “ Control Engineering Practice, vol. 8, no.
3, pp. 259-269, Mar. 2000.
[51] S. H. Lee, and J. B. Song, “Acceleration estimator for low-velocity and
low-acceleration regions based on encoder position data,” IEEE/ASME
Trans. on Mechatronics, vol. 6, no. 1, pp. 58-64,2001
[52] 張智星, MATLAB程式設計與應用, 2002.
[53] 工研院, EPCIO-4000/4005硬體開發技術手冊Ver3.0,2003.
[54] 工研院,EPCIO-401-1硬體使用手冊Ver2.0,2001.
[55] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Introduction to Robotics:
Control, Sensing, Vision and Intelligence. New York: McGRAW-Hill,
1987.