簡易檢索 / 詳目顯示

研究生: 許誠顯
Hsu, Cheng-Hsien
論文名稱: 無轉矩感測器技術於下肢力輔助控制架構之探討
Study on torque sensor-less technique for control of a lower limb power assisting scheme
指導教授: 鄭銘揚
Cheng, Ming-Yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 120
中文關鍵詞: 轉矩觀測器下肢力輔助裝置無力量感測器技術
外文關鍵詞: Torque Observer, Lower Limb Power Assisting Device, Force sensor-less technology
相關次數: 點閱:108下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    由於全球人口老化日漸嚴重與醫護人員短缺,使得助力裝置的需求
    不斷增加。環顧目前的助力裝置,大多需要透過力量感測器量測使用者
    與輔助機構之間的接觸力(Reaction Force)作為助力大小的依據。然而,
    力量感測器具有成本較高、量測點限制、容易受到雜訊干擾以及溫度變
    化所產生量測資訊飄移等缺點。因此,若能夠利用無轉矩感測器技術來
    取代力量感測器,不但可以解決上述之缺點與提升力輔助之效能,更能
    降低輔助裝置的建構成本。有鑑於此,本論文之主要目的為發展一轉矩
    觀測器(VDOB),用以估測使用者對力輔助機構所施加之負載轉矩。並
    藉由力輔助機構上之伺服馬達施加一輔助力,進而完成力輔助之目的。
    最後透過自行設計之下肢力輔助裝置進行助力實驗,藉以驗證本論文所
    提之無轉矩感測器技術確實能提供使用者所需之輔助力。
    關鍵字:轉矩觀測器、下肢力輔助裝置、無力量感測器技術

    ABSTRACT
    Due to the aging of the world’s population and the shortages of health
    care providers, there is a great demand for the power assisting device. Most
    of the current power assisting devices require force sensors to measure the
    reaction force between users and the devices to decide how much the
    assisting force is. However, there are some disadvantages in force sensors:
    the high cost, the limited measurement points, the sensitivity to noise and the
    drift in measurement due to the change in temperature. Consequently, if the
    force sensors can be replaced by the torque sensor-less technology, not only
    can we eliminate the drawbacks mentioned above and improve the
    effectiveness of force assisting, but also cut down the cost of the assisting
    device. To this extent, the main purpose of this thesis is to develop a torque
    observer (VDOB) to estimate the load torque on the power assisting device
    from users, and exert an assisting force by the motor on the assisting device
    to accomplish power assisting. In addition, some experiments are conducted
    through a self-designed lower limb power assisting device to verify that the
    proposed torque sensor-less technology can indeed provide the assisting
    force to users.
    Keywords: Torque Observer, Lower Limb Power Assisting Device, Force
    sensor-less technology

    目錄 中文摘要............................................................................................ I 英文摘要...........................................................................................II 誌謝 ............................................................................................. III 目錄 .............................................................................................. V 表目錄............................................................................................VII 圖目錄.......................................................................................... VIII 第一章 緒論................................................................................... 1 1-1 前言..................................................................................................... 1 1-2 研究動機.............................................................................................. 1 1-3 文獻回顧.............................................................................................. 2 1-4 論文架構.............................................................................................. 9 第二章 系統動態數學模型..................................................... 10 2-1 簡介................................................................................................... 10 2-2 下肢外骨骼裝置之動態數學模型...................................................... 10 2-3 單軸力輔助之近似模型.................................................................... 12 2-3-1 Lorenz 鑑別法.......................................................................... 14 2-3-2 勞倫茲系統鑑別實作.............................................................. 17 2-3-3 Karnopp 摩擦力模型................................................................ 22 第三章 力輔助控制架構.......................................................... 30 3-1 簡介................................................................................................. 30 3-2 閉迴路轉矩觀測器應用於力輔助架構分析...................................... 30 3-3 干擾量觀測器應用於力輔助架構...................................................... 33 3-3-1 低加速度觀測器...................................................................... 35 3-3-2 干擾量觀測器(利用低加速度觀測器估測加速度)................. 39 3-4 基於變型干擾量補償器應用於助力架構......................................... 41 3-5 變型干擾量觀測器............................................................................ 44 3-6 模擬結果.......................................................................................... 46 3-6-1 助力倍數和助力之間之關係: .................................................. 47 3-6-2 當負載轉矩為定值的情況下模擬結果................................... 47 3-6-3 當負載轉矩為時變的情況下之模擬結果............................... 53 3-6-4 加入外在干擾之模擬結果....................................................... 58 3-7 力量感測器、機構和金屬下肢三者之關係..................................... 63 第四章 實驗設備介紹以及實驗結果................................... 66 4-1 簡介................................................................................................... 66 4-2 系統架構.......................................................................................... 66 4-2-1 軟硬體設備............................................................................... 67 4-3 膝關節與髖關節估力和助力結果..................................................... 71 4-3-1 實驗一:估測負載轉矩實驗結果.............................................. 72 4-3-2 實驗二:力量感測器所量測接觸力與負載轉矩關係之驗證.... 75 4-3-3 實驗三:應用變型干擾量觀測器於力輔助架構之助力結果.... 80 第五章 結論與建議................................................................. 103 5-1 結論............................................................................................... 103 5-2 未來研究建議................................................................................... 103 參考文獻..................................................................................... 104 附錄 ........................................................................................... 111

    [1] B. Dellon and Y. Matsuka, “Prosthetics, Exoskeletons, and
    Rehabilitation,” IEEE Robitics and Automation Magazine, vol. 14,
    no.1, pp.30-34, Mar. 2007.
    [2] A. Tapus﹐M. Mataric, and B. Scassellati, “Socially Assistive Robotics,”
    IEEE Robotics and Automation Magazine﹐vol. 14, no., pp.35-42, Mar.
    2007.
    [3] K. Yamamoto, K. Hyodo, M. Ishi, T. Matsuo,“Development of power
    assisting suit for assisting nurse labor,” JSME International Journal,
    Series C: Mechanical Systems, Machine Elements and Manufacturing,
    vol. 45, no. 3, pp. 703-711, Sep. 2002.
    [4] K. Yamamoto, M. Ishi, H. Noborisaka, and K. Hyodo,“Stand Alone
    Wearable Power Assisting Suit-Sensing and Control Systems,” in Proc.
    of the 2004 IEEE International Workshop on Robot and Human
    Interactive Communication Kurashiki, Okayama Japan, 20-22 Sep. 2004,
    pp. 661-666.
    [5] H. Kazerooni and R. Steger, “The Berkeley Lower Extremity
    Exoskeleton,” Journal of Dynamic Systems, Measurement, and Control,
    vol. 128, pp. 14–25, Mar. 2006.
    [6] http://bleex.me.berkeley.edu/index.htm, Berkeley Robotics & Human
    Engineering Lab, University of California, Berkeley.
    [7] J. Ghan, R. Sstger, and H. Kazerooni, “Control and system identification
    for the Berkeley lower extremity exoskeleton, ” Advanced Robotics, vol.
    20, no. 9, pp. 989–1014﹐2006.
    105
    [8] R. Steger, S. H. Kim, and H. Kazerooni, “Control Scheme and Networked
    Control Architecture for the Berkeley Lower Extremity Exoskeleton,” in
    Proc. of the IEEE International Conference on Robotics and Automation,
    Orlando﹐Florida, 15-19 May 2006, pp. 3469-3476.
    [9] H. Kazerooni, R. Steger, and L. Huang, “Hybrid Control of the Berkeley
    Lower Extremity Exoskeleton,” International Journal of Robotics
    Research, vol. 25, no. 5-6, pp. 561-573, May 2006.
    [10] H. Kazerooni and R. Steger, “The Berkeley Lower Extremity
    Exoskeleton,” Journal of Dynamics Systems, Measurement, and Control,
    vol. 128, pp.14-25, Mar. 2006.
    [11] A. Zoss and H. Kazerooni, ” Design of an electrically actuated lower
    extremity exoskeleton, ” Advanced Robotics, vol. 20, no. 9, pp. 967-988,
    Mar. 2006.
    [12] K. Suzuki, G. Mito, H. Kawamoto, Y. Hasegawa, and Y. Sankai,
    “Intention-based walking support for paraplegia patients with Robot Suit
    HAL,” Advanced Robotics, vol. 21, no, 12, pp. 1441-1469, Oct. 2007.
    [13] T. Murakami, F. Yu, and K. Ohnishi, “Torque Sensor-less Control in
    Multidegree-of-Freedom Manipulator,” IEEE Transactions on Industrial
    Electronics, vol. 40, no. 2, Apr. 1993.
    [14] M. Nakao, K. Ohnishi, and K. Miyachi, “A robust decentralized joint
    control based on interference estimation,” in Proc. of IEEE International
    Conference on Cons Robotics Automation, Yokohama, Japan, May 1987,
    pp. 326-331.
    [15] 林文斌,電動自行車之電助力系統開發,碩士論文﹐國立成功大 學電機
    工程學系﹐2010.
    106
    [16] T. Noritsugu and T. Tanaka, “Application of Rubber Artificial Muscle
    Manipulator as a Rehabilitation Robot,” IEEE/ASME, Transactions on
    Mechatronics, vol. 2, no. 4, Dec. 1997.
    [17] Y. Ikeuchi, J. Ashihara﹐Y. Hiki﹐H. Kudoh, and T. Noda, “Walking Assist
    Device with Bodyweight Support System,” in Proc. of Intelligent Robots
    and Systems﹐IEEE/RSJ International Conference on, Saitama, 10-15 Oct.
    2009, pp.4073-4079.
    [18] http://corporate.honda.com/innovation/walk-assist/
    [19] D.P. Ferris, G.S. Sawicki and M.A. Daley, “A physiologist's perspective
    on robotic exoskeletons for human locomotion, ” International Journal of
    Humanoid Robotics, Vol. 4, No. 3, pp. 507–528, 2007.
    [20] S. M. Cain, K. E. Gordon, and D. P. Ferris, “Locomotor adaptation to a
    powered ankle-foot orthosis depends on control method,” Journal of
    Neuroengineering and Rehabilitation, vol. 4, pp. 48, 2007.
    [21] H. J. Huang and D. P. Ferris., “Neural coupling between upper and lower
    limbs during recumbent stepping,” Journal of Applied Physiology, vol.
    97, pp. 1299–1308, Oct. 2004.
    [22] A. M. Simon, R. B. Gillespie, and D. P. Ferris, “Symmetry-based
    resistance as a novel means of lower limb rehabilitation,” Journal of
    Biomechanics, vol. 40, pp.1286-1292, 2006.
    [23] C. L. Lewis and D. P. Ferris, “Walking with increased ankle pushoff
    decreases hip muscle moments,” Journal of Biomechanics, vol. 41, pp.
    2082-2089, May 2008.
    [24] K. E. Gordon and D. P. Ferris, “Learning to walk with a robotic ankle
    exoskeleton,” Journal of Biomechanics, vol. 40, pp. 2636–2644, 2007.
    107
    [25] G. S. Sawicki and D. P. Ferris, “Powered ankle exoskeletons reveal the
    metabolic cost of plantar flexor mechanical work during walking with
    longer steps at constant step frequency,” Journal of Experimental
    Biology, vol. 212, pp. 21-31, 2008.
    [26] http://www.personal.umich.edu/~ferrisdp/hnl.html,Human
    Neuromechanics Lab, University of Michigan.
    [27] D. J. Rinkensmeyer, C. T. Pang, C. A. Nessler, and C. C. Paninter,
    “Web-based telerehabilitation for the upper-extremity after stroke,” IEEE
    Transactions on Neural Science and Rehabilitation Engineering, vol. 10,
    no. 2, pp. 102-108, 2002.
    [28] http://gram.eng.uci.edu/~dreinken/Biolab/biolab.htm#People:,
    Biomechatronics Lab , University of California, Irvine.
    [29] S.K. Banala, A. Kulpe, and S.K. Agrawal, “A Powered Leg Orthosis for
    Gait Rehabilitation of Motor-Impaired Patients,” in Proc. of IEEE
    International Conference on Robotics and Automation, Roma, Italy,
    10-14 Apr. 2007, pp. 4140-4145.
    [30] Agrawal, S.K. and Banala, S.K. and Fattah, A. and Sangwan, V. and
    Krishnamoorthy, V. and Scholz, J.P. and Hsu Wei-Li, “Assessment of
    motion of a swing leg and gait rehabilitation with a gravity balancing
    exoskeleton,” IEEE Transactions on Neural Systems and Rehabilitation
    Engineering, vol. 15, no. 3, pp.410 – 420, Sept. 2007.
    [31] K. K. Mankala, S. K. Banala ,and S. K. Agrawal, “Passive Swing
    Assistive Exoskeletons for Motor-Incomplete Spinal Cord Injury
    Patients,” in Proc. of IEEE International Conference on Robotics and
    Automation Roma, Roma, Italy, 10-14 Apr. 2007, pp. 3761-3766.
    108
    [32] S. K. Agrawal and A. Fattah, “Theory and design of an orthotic device
    for full or partial gravity-balancing of a human leg during motion,” IEEE
    Transactions on neural systems and rehabilitation engineering, vol. 12,
    pp.157 - 165, Jun. 2004.
    [33] S. K. Banala, S. K. Agrawal, A. Fattah, V. Krishnamoorthy, W. L. Hsu, J.
    Scholz, and K. Rudolph “Gravity Balancing Leg Orthosis And Its
    Performance Evaluation,” IEEE Transactions on Robotics, vol. 22, no. 6,
    pp. 1228-1239, Dec. 2006.
    [34] A. Fattah and S. K. Agrawal, “On the design of a passive orthosis to
    gravity balance human legs ,” Journal of Mechanical Design, vol. 127,
    pp. 802-808, July 2008.
    [35] http://mechsys4.me.udel.edu/research/medical_robotics/ , Mechanical
    Systems Lab, University of Delaware.
    [36] http://biomech.media.mit.edu/research/pro3_3.htm , Media Lab
    Biomechatronics Group, Massachusetts Institute of Technology.
    [37] A. M. Dollar and H. Herr, “Lower extremity exoskeletons and active
    orthoses: challenges and state-of-the-art, ” IEEE Transactions on
    Robotics, vol. 24, no. 1, Feb. 2008.
    [38] A. M. Dollar and H. Herr, “Active orthoses for the lower-limbs:
    challenges and state of the art,” in Proc. of the 2007 IEEE 10th
    International Conference on Rehabilitation Robotics, Noordwijk,
    Nertherlands, 13-15 June 2007, pp. 968-977.
    [39] J.A. Blaya and H. Herr, “Adaptive control of a variable-impedance
    ankle-foot orthosis to assist drop-foot Gait, ”IEEE Transactions on
    Neural Systems and Rehabilitation Engineering, vol. 12, no. 1, pp. 24-31,
    109
    Mar. 2004.
    [40] C. J. Walsh, D. Paluska, K. Pasch, W. Grand, A. Valiente, and H. Herr,
    “Development of a lightweight, underactuated exoskeleton for
    load-carrying augmentation, ”in Proc. of the 2006 IEEE International
    Conference on Robotics and Automation Orlando, Orlando, Florida,
    15-19 May 2006, pp.3485-3491.
    [41] 葉賜旭, “多關節型下肢輔助復健機器人研製研究成果報告”,行政院國
    家科學委員會專題研究計畫成果報告, 2008.
    [42] 馬仕安 ,膝和髖關節神經復健用機器人之研究, 碩士論文﹐國立成功
    大學機械工程學系, 2007.
    [43] 吳思穎, 上肢復健機器臨床試驗與改良﹐國立成功大學機械工程學系
    碩士論文, 2003.
    [44] 潘柏瑋, 中風病患踝關節復健用機器人之研究﹐國立成功大學機械工
    程學系碩士論文, 2009.
    [45] C. T. Johnson and R. D. Lorenz,”Experimental identification of friction
    and its compensation in precise, position controlled mechanisms,” IEEE
    Transactions on Industry Applications, vol. 28, vol. 28, pp.1392-1398,
    Dec. 1992.
    [46] D. Karnopp, "Computer simulation of slip-stick friction in mechanical
    dynamic systems," ASME Journal of Dynamic Systems,Measurement,
    and Control, vol. 107, pp. 100-103, Mar. 1985.
    [47] F. Chen, Y. Yu, and Y. Ge, “Dynamic model and motion control analysis
    of the power assist intelligenceleg,” in Proc. of 6th World Congress on
    Intelligent Control and Automation, Dalian, China, pp. 6436-6440, Jun.
    110
    2006.
    [48] 劉叡明, 伺服馬達低轉速控制改善之研究, 碩士論文,國立成功大學
    電機工程學系, 2008.
    [49] 吳仁哲, 伺服控制系統之摩擦力與干擾補償研究, 碩士論文,國立成
    功大學電機工程學系﹐2009.
    [50] M. C. Tsai, E. C. Tseng, and M. Y. Cheng, " Design of a torque observer
    for detecting abnormal load, “ Control Engineering Practice, vol. 8, no.
    3, pp. 259-269, Mar. 2000.
    [51] S. H. Lee, and J. B. Song, “Acceleration estimator for low-velocity and
    low-acceleration regions based on encoder position data,” IEEE/ASME
    Trans. on Mechatronics, vol. 6, no. 1, pp. 58-64,2001
    [52] 張智星, MATLAB程式設計與應用, 2002.
    [53] 工研院, EPCIO-4000/4005硬體開發技術手冊Ver3.0,2003.
    [54] 工研院,EPCIO-401-1硬體使用手冊Ver2.0,2001.
    [55] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Introduction to Robotics:
    Control, Sensing, Vision and Intelligence. New York: McGRAW-Hill,
    1987.

    下載圖示 校內:2021-12-31公開
    校外:2021-12-31公開
    QR CODE