簡易檢索 / 詳目顯示

研究生: 陳威任
Chen, Wei-Jen
論文名稱: 機械手臂引導上肢控制任務應用於腦部活化
Robotic Arm Guiding Upper Extremity Motor Control Tasks on Brain Activation
指導教授: 蘇芳慶
Su, Fong-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 85
中文關鍵詞: 機械手臂上肢復健力量控制腦活化近紅外線光譜儀指尖力量
外文關鍵詞: Robotic Arm, Upper Extremity Rehabilitation, Force Control, Brain Activation, Functional Near-Infrared Spectroscopy (fNIRS), Fingertip Force
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今有許多疾病如帕金森氏症、中風、老化等會造成腦部損傷,而動作訓練能刺激腦部活化並提升日常生活活動的功能。過去研究發現上肢動作訓練中包含的力量控制因素能更加促進腦部活化,然而並沒有針對上臂協調與指尖力控制進行更細緻的研究。本研究透過結合日常生活常見的伸手動作與機械手臂引導發展了一套訓練上肢協調與控制指尖力的系統,並與單純上肢協調動作進行對照比較,探討腦部活化的區域與活化強度;除此之外,為了確認在相同刺激下腦區活化是否有穩定性,本研究也將透過多次重覆試驗的方式量測不同腦區在相同刺激下的活化穩定性。本研究共募集了18位慣用右手的年輕人,進行日內測量與日間測量用以評估活化程度與穩定性。透過比較單純力量控制任務、無力量限制伸手動作控制任務與伸手動作控制且有力量限制任務之三種不同的情境,本研究利用近紅外光線頻譜儀 (functional Near-Infrared Spectroscopy, fNIRS)進行評估不同腦區間的活化程度。研究結果發現,在日內測量中,腦區活化穩定性呈現輕度至中度一致性 (ICC = 0.545 , p < 0.05),而在日間測量腦區活化穩定性呈現中等至良好一致性 (ICC = 0.588, p < 0.05)。而在不同訓練任務中,有包含力量控制的腦區活化與無力量控制的任務在前運動皮層 (premotor cortex, PMC)、初級運動皮層 (primary motor cortex, M1) 有顯著較高的活化 (p < 0.05),但在都有力量控制的情況下,有無伸手動作控制的不同任務在所有腦區中沒有顯著的差別。本研究結果顯示,在跨日的持續訓練中,包含有力量控制的訓練任務能夠穩定的活化前運動皮層與初級運動皮層,且相對於沒有力量控制的伸手動作而言,能夠有較高的腦區活化刺激。本研究成果將能在提供臨床設計介入腦傷個案訓練時的基礎成果,尤其在針對刺激前運動皮層與初級運動皮層相關訓練時,含有力量控制的機械手臂訓練任務能成為可考慮的訓練方案之一。

    Diseases, such as Parkinson’s disease, stroke, and aging, can lead to brain damage. Motor training can enhance brain activation and improve activities of daily living (ADL). Studies have shown that force control in upper-limb training further boosts brain activation. However, detailed research on upper arm coordination and fingertip force control is not available. This study developed a robotic rehabilitation system for upper limb by integrating reaching movements with fingertip force control. The outcome measures on brain activation of the developed system were compared to basic upper extremity coordination movements. Additionally, to verify the stability of brain region activation under consistent stimuli, this study assessed activation stability across various brain regions through multiple repeated experiments under the same conditions. This study recruited 18 right-handed young adults to measure their activation levels and stability within and between days. By comparing reaching movement with applied fingertip force control (MFC), reaching movement without applied fingertip force control (MC), and applied fingertip force control without movement (FC), this study utilized functional Near-Infrared Spectroscopy (fNIRS) to evaluate brain region activation levels. The findings indicated mild-to-moderate consistency in within-day brain region activation stability (ICC = 0.545, p < 0.05) and moderate-to-good consistency between-days (ICC = 0.588, p < 0.05). Training tasks involving force control exhibited significantly higher activation in the premotor cortex (PMC) and primary motor cortex (M1) (p < 0.05) than tasks without force control. In the force control tasks, no significant differences in brain region activation were observed between tasks with and without motion control. This study showed that continuous training with force control tasks consistently activated the premotor and primary motor cortices. Compared with reaching movements without force control, finger-tip force control offers higher brain region stimulation. These findings may provide value information for clinical interventions of brain injuries, particularly those targeting the premotor and primary motor cortices. Robotic arm rehabilitation with fingertip force control can be considered a viable option.

    中文摘要 I ABSTRACT II 致謝 IV Chapter 1 Introduction 1 1.1Background 1 1.2 Motor task 1 1.2.1 Motor control & force control 1 1.2.2 Upper extremity motor task 2 1.2.3 Upper extremity motor control task with force control 3 1.3 Motor control to brain activation 4 1.3.1 Brain region related to motor control 5 1.4 Test-retest reliability (TRR) 6 1.5 Robotic arm in rehabilitation 6 1.6 Motivation and study purpose 7 1.6.1 Aim and hypotheses 7 Chapter 2 Methods 9 2.1 Participants 9 2.2 Instruments 9 2.2.1 Robotic arm 9 2.2.2 Functional near-infrared spectroscopy (fNIRS) 12 2.3 Experimental design 15 2.3.1 Setting the starting position 15 2.3.2 Motor task design 16 2.3.3 Protocol 17 2.4 Parameter 19 2.4.1 Force control ability 19 2.4.2 Brain activation 20 2.4.3 Test-retest Reliability (TRR) 20 2.5 Statistical Analysis 21 Chapter 3 Results 22 3.1 Block averaged hemoglobin concentration changes in each session and brain region for three motor tasks 22 3.1.1 Interaction effect between session and motor task 22 3.2 Test-Retest Reliability 22 3.2.1 TRR in one-way repeated measure ANOVA 23 3.2.2 ICC 26 3.3 Brain activation during motor tasks 28 3.3.1 Comparison of bilateral brain activation 28 3.3.2 PFC in three motor tasks 30 3.3.3 PMC in three motor tasks 32 3.3.4 SMA in three motor tasks 34 3.3.5 M1 in three motor tasks 36 3.4 Force data Analysis 39 3.4.1 RMSE in six sessions 39 Chapter 4 Discussion 42 4.1 Interaction effect between motor task and session 42 4.2 Test-retest reliability on brain activation in different motor task 43 4.3 Effect of different motor tasks to brain activation in each brain region 46 4.3.1 Activation in the PFC 47 4.3.2 Activation in the SMA 47 4.3.3 Activation in the PMC 48 4.3.4 Activation in the M1 49 4.4 Force performance relative to brain activation 49 4.5 Limitations 49 Chapter 5 Conclusion 51 References 52 Appendix 61

    1. Brekke, M.F., La Cour, K., Brandt, Å., Peoples, H., Wæhrens, E.E.: The association between ADL ability and quality of life among people with advanced cancer. Occup Ther Int. 2019, (2019). https://doi.org/10.1155/2019/2629673
    2. Houwink, A., Steenbergen, B., Prange, G.B., Buurke, J.H., Geurts, A.C.H.: Upper-limb motor control in patients after stroke: Attentional demands and the potential beneficial effects of arm support. Hum Mov Sci. 32, 377–387 (2013). https://doi.org/10.1016/j.humov.2012.01.007
    3. Lee, B., Lee, M., Yoh, M.S., You, H., Park, H., Jung, K., Lee, B.H., Na, D.L., Kim, G.H.: The Effects of Age, Gender, and Hand on Force Control Capabilities of Healthy Adults. Hum Factors. 57, 1348–1358 (2015). https://doi.org/10.1177/0018720815599284
    4. Gao, J., Gao, Q., Huo, L., Yang, J.: Impaired Activity of Daily Living Status of the Older Adults and Its Influencing Factors: A Cross-Sectional Study. Int J Environ Res Public Health. 19, (2022). https://doi.org/10.3390/ijerph192315607
    5. Carey, L.M., Abbott, D.F., Egan, G.F., Bernhardt, J., Donnan, G.A.: Motor impairment and recovery in the upper limb after stroke: Behavioral and neuroanatomical correlates. Stroke. 36, 625–629 (2005). https://doi.org/10.1161/01.STR.0000155720.47711.83
    6. Desrosiers, J., Hebert, R., Bravo, G., Dutil, E.: Upper-extremity Motor Co-ordination of Healthy Elderly People. (1995)
    7. Chu, Q., Guo, X., Zhang, T., Huo, C., Zhang, X., Xu, G., Lun, Z., Cheng, S., Xie, P.: Stroke-Related Alterations in the Brain’s Functional Connectivity Response Associated with Upper Limb Multi-Joint Linkage Movement. Brain Sci. 13, (2023). https://doi.org/10.3390/brainsci13020338
    8. Seidler, R.D., Bernard, J.A., Burutolu, T.B., Fling, B.W., Gordon, M.T., Gwin, J.T., Kwak, Y., Lipps, D.B.: Motor control and aging: Links to age-related brain structural, functional, and biochemical effects, (2010)
    9. Zapparoli, L., Mariano, M., Paulesu, E.: How the motor system copes with aging: a quantitative meta-analysis of the effect of aging on motor function control. Commun Biol. 5, (2022). https://doi.org/10.1038/s42003-022-03027-2
    10. Shafizadeh, M., Sharifnezhad, A., Wheat, J.: Age-related changes to motor synergies in multi-joint and multi-finger manipulative skills: a meta-analysis. Eur J Appl Physiol. 119, 2349–2362 (2019). https://doi.org/10.1007/s00421-019-04216-4
    11. Muratori, L.M., Lamberg, E.M., Quinn, L., Duff, S. V.: Applying principles of motor learning and control to upper extremity rehabilitation. Journal of Hand Therapy. 26, 94–103 (2013). https://doi.org/10.1016/j.jht.2012.12.007
    12. Pethick, J., Taylor, M.J.D., Harridge, S.D.R.: Aging and skeletal muscle force control: Current perspectives and future directions, (2022)
    13. Hepple, R.T., Rice, C.L.: Innervation and neuromuscular control in ageing skeletal muscle, (2016)
    14. Luft, A.R., Smith, G. V., Forrester, L., Whitall, J., Macko, R.F., Hauser, T.K., Goldberg, A.P., Hanley, D.F.: Comparing brain activation associated with isolated upper and lower limb movement across corresponding joints. Hum Brain Mapp. 17, 131–140 (2002). https://doi.org/10.1002/hbm.10058
    15. Jin, Y., Seong, J., Cho, Y., Yoon, B.: Effects of aging on motor control strategies during bimanual isometric force control. Adaptive Behavior. 27, 267–275 (2019). https://doi.org/10.1177/1059712319849896
    16. Christou, E.A., Zelent, M., Carlton, L.G.: Force Control Is Greater in the Upper Compared With the Lower Extremity. J Mot Behav. 35, 322–324 (2003). https://doi.org/10.1080/00222890309603153
    17. Kivell, T.L.: Evidence in hand: Recent discoveries and the early evolution of human manual manipulation, (2015)
    18. Brekke, M.F., La Cour, K., Brandt, Å., Peoples, H., Wæhrens, E.E.: The association between ADL ability and quality of life among people with advanced cancer. Occup Ther Int. 2019, (2019). https://doi.org/10.1155/2019/2629673
    19. Bae, S., Lee, Y., Chang, P.H.: There is No test–retest reliability of brain activation induced by robotic passive hand movement: A functional NIRS study. Brain Behav. 10, (2020). https://doi.org/10.1002/brb3.1788
    20. Bae, S.J., Jang, S.H., Seo, J.P., Chang, P.H.: The optimal speed for cortical activation of passive wrist movements performed by a rehabilitation robot: A functional NIRS study. Front Hum Neurosci. 11, (2017). https://doi.org/10.3389/fnhum.2017.00194
    21. da Silva, E.S.M., Ocamoto, G.N., Santos-Maia, G.L. dos, de Fátima Carreira Moreira Padovez, R., Trevisan, C., de Noronha, M.A., Pereira, N.D., Borstad, A., Russo, T.L.: The Effect of Priming on Outcomes of Task-Oriented Training for the Upper Extremity in Chronic Stroke: A Systematic Review and Meta-analysis, (2020)
    22. Aye ThAnT, A., wAnpen, Sa., nuAlneTr, nomjiT, punTumeTAkul, rungThip, ChATChAwAn, urAiwAn, myo hlA, khin, ThuzAr khin, myo: Effects of task-oriented training on upper extremity functional performance in patients with sub-acute stroke: a randomized controlled trial.
    23. Da Silva, P.B., Antunes, F.N., Graef, P., Cechetti, F., Pagnussat, A.D.S.: Strength training associated with task-oriented training to enhance upper-limb motor function in elderly patients with mild impairment after stroke: A randomized controlled trial. Am J Phys Med Rehabil. 94, 11–19 (2015). https://doi.org/10.1097/PHM.0000000000000135
    24. Jin, Y., Seong, J.W., Cho, Y.C., Yoon, B.C.: Effects of aging on motor control strategies during bimanual isometric force control. Adaptive Behavior. 27, 267–275 (2019). https://doi.org/10.1177/1059712319849896
    25. Almotairy, N., Kumar, A., Grigoriadis, A.: Motor control strategies during unpredictable force control tasks in humans. J Oral Rehabil. 47, 1222–1232 (2020). https://doi.org/10.1111/joor.13052
    26. Kurillo, G., Zupan, A., Bajd, T.: Force tracking system for the assessment of grip force control in patients with neuromuscular diseases. Clinical Biomechanics. 19, 1014–1021 (2004). https://doi.org/10.1016/j.clinbiomech.2004.07.003
    27. Keogh, J.W.L., O’Reilly, S., O’Brien, E., Morrison, S., Kavanagh, J.J.: Can Resistance Training Improve Upper Limb Postural Tremor, Force Steadiness and Dexterity in Older Adults? A Systematic Review, (2019)
    28. Giné-Garriga, M., Roqué-Fíguls, M., Coll-Planas, L., Sitjà-Rabert, M., Salvà, A.: Physical exercise interventions for improving performance-based measures of physical function in community-dwelling, frail older adults: A systematic review and meta-analysis, (2014)
    29. Hübner, L., Voelcker-Rehage, C.: Does physical activity benefit motor performance and learning of upper extremity tasks in older adults? – A systematic review, (2017)
    30. Logue, R.N., Goldenkoff, E.R., Vesia, M., Brown, S.H.: Measuring Hand Sensory Function and Force Control in Older Adults: Are Current Hand Assessment Tools Enough? Journals of Gerontology - Series A Biological Sciences and Medical Sciences. 77, 1405–1412 (2022). https://doi.org/10.1093/gerona/glab368
    31. Choi, J.S., Choi, M.H.: A study on brain neuronal activation based on the load in upper limb exercise (STROBE). Medicine (United States). 101, E30761 (2022). https://doi.org/10.1097/MD.0000000000030761
    32. Yang, C.L., Lim, S.B., Peters, S., Eng, J.J.: Cortical Activation During Shoulder and Finger Movements in Healthy Adults: A Functional Near-Infrared Spectroscopy (fNIRS) Study. Front Hum Neurosci. 14, (2020). https://doi.org/10.3389/fnhum.2020.00260
    33. Guérin, S.M.R., Vincent, M.A., Karageorghis, C.I., Delevoye-Turrell, Y.N.: Effects of Motor Tempo on Frontal Brain Activity: An fNIRS Study. Neuroimage. 230, (2021). https://doi.org/10.1016/j.neuroimage.2020.117597
    34. Jalalvandi, M., Riahi Alam, N., Sharini, H.: Optical Imaging of Brain Motor Cortex Activation During Wrist Movement Using Functional Near-Infrared Spectroscopy (fNIRS). Arch Neurosci. 6, (2019). https://doi.org/10.5812/ans.90089
    35. Noble, J.W., Eng, J.J., Boyd, L.A.: Effect of visual feedback on brain activation during motor tasks: An fMRI study.
    36. Dai, T.H., Liu, J.Z., Sahgal, V., Brown, R.W., Yue, G.H.: Relationship between muscle output and functional MRI-measured brain activation. Exp Brain Res. 140, 290–300 (2001). https://doi.org/10.1007/s002210100815
    37. Archer, D.B., Kang, N., Misra, G., Marble, S., Patten, C., Coombes, S.A.: Visual feedback alters force control and functional activity in the visuomotor network after stroke. Neuroimage Clin. 17, 505–517 (2018). https://doi.org/10.1016/j.nicl.2017.11.012
    38. Ward, N.S., Newton, J.M., Swayne, O.B.C., Lee, L., Frackowiak, R.S.J., Thompson, A.J., Greenwood, R.J., Rothwell, J.C.: The relationship between brain activity and peak grip force is modulated by corticospinal system integrity after subcortical stroke. European Journal of Neuroscience. 25, 1865–1873 (2007). https://doi.org/10.1111/j.1460-9568.2007.05434.x
    39. Andrushko, J.W., Gould, L.A., Renshaw, D.W., Ekstrand, C., Hortobágyi, T., Borowsky, R., Farthing, J.P.: High Force Unimanual Handgrip Contractions Increase Ipsilateral Sensorimotor Activation and Functional Connectivity. Neuroscience. 452, 111–125 (2021). https://doi.org/10.1016/j.neuroscience.2020.10.031
    40. Andrushko, J.W., Gould, L., Renshaw, D.W., Forrester, S., Kelly, M.E., Linassi, G., Mickleborough, M., Oates, A., Hunter, G., Borowsky, R., Farthing, J.P.: Ipsilesional Motor Cortex Activation with High-force Unimanual Handgrip Contractions of the Less-affected Limb in Participants with Stroke. Neuroscience. 483, 82–94 (2022). https://doi.org/10.1016/j.neuroscience.2021.12.011
    41. Cheng, P.Y., Chieh, H.F., Lin, C.J., Hsu, H.Y., Chen, J.J.J., Kuo, L.C., Su, F.C.: Digit force controls and corresponding brain activities in finger pressing performance: A comparison between older adults and young individuals. J Aging Phys Act. 28, 94–103 (2020). https://doi.org/10.1123/japa.2018-0252
    42. 蔡嘉煌: 手指力量控制的VR系統對大腦活化之影響 = Development of a VR pinch force control training system and its effects on brain activation, (2023)
    43. Miller, E.K., Freedman, D.J., Wallis, J.D.: The prefrontal cortex: Categories, concepts and cognition. In: Philosophical Transactions of the Royal Society B: Biological Sciences. pp. 1123–1136. Royal Society (2002)
    44. Yang, Y., Raine, A.: Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: A meta-analysis, (2009)
    45. Yuan, P., Raz, N.: Prefrontal cortex and executive functions in healthy adults: A meta-analysis of structural neuroimaging studies, (2014)
    46. Abbreviations CPG central pattern generator M1 primary motor cortex NMDA N-methyl-D-aspartate. (2000)
    47. Bhattacharjee, S., Kashyap, R., Abualait, T., Annabel Chen, S.H., Yoo, W.K., Bashir, S.: The Role of Primary Motor Cortex: More Than Movement Execution, (2021)
    48. Li, N., Chen, T.W., Guo, Z. V., Gerfen, C.R., Svoboda, K.: A motor cortex circuit for motor planning and movement. Nature. 519, 51–56 (2015). https://doi.org/10.1038/nature14178
    49. Shima, K., Tanji, J.: Both Supplementary and Presupplementary Motor Areas Are Crucial for the Temporal Organization of Multiple Movements. (1998)
    50. Willer, C., Ramsay, S.C., Wise, R.J.S., Friston, K.J., Frackwiak, R.S.J.: Individual patterns of functional reorganization in the human cerebral cortex after capsular infraction. Ann Neurol. 33, 181–189 (1993). https://doi.org/10.1002/ana.410330208
    51. Estévez, N., Yu, N., Brügger, M., Villiger, M., Hepp-Reymond, M.C., Riener, R., Kollias, S.: A Reliability Study on Brain Activation During Active and Passive Arm Movements Supported by an MRI-Compatible Robot. Brain Topogr. 27, 731–746 (2014). https://doi.org/10.1007/s10548-014-0355-9
    52. Jaeger, L., Marchal-Crespo, L., Wolf, P., Riener, R., Kollias, S., Michels, L.: Test-retest reliability of fMRI experiments during robot-assisted active and passive stepping. J Neuroeng Rehabil. 12, (2015). https://doi.org/10.1186/s12984-015-0097-2
    53. Novi, S.L., Forero, E.J., Rubianes Silva, J.A.I., de Souza, N.G.S.R., Martins, G.G., Quiroga, A., Wu, S.T., Mesquita, R.C.: Integration of Spatial Information Increases Reproducibility in Functional Near-Infrared Spectroscopy. Front Neurosci. 14, (2020). https://doi.org/10.3389/fnins.2020.00746
    54. de Rond, V., Gilat, M., D’Cruz, N., Hulzinga, F., Orban de Xivry, J.-J., Nieuwboer, A.: Test-retest reliability of functional near-infrared spectroscopy during a finger-tapping and postural task in healthy older adults. Neurophotonics. 10, (2023). https://doi.org/10.1117/1.nph.10.2.025010
    55. Bhambhani, Y., Maikala, R., Farag, M., Rowland, G.: Reliability of near-infrared spectroscopy measures of cerebral oxygenation and blood volume during handgrip exercise in nondisabled and traumatic brain-injured subjects. J Rehabil Res Dev. 43, 845–856 (2006). https://doi.org/10.1682/JRRD.2005.09.0151
    56. Plichta, M.M., Herrmann, M.J., Baehne, C.G., Ehlis, A.-C., Richter, M.M., Pauli, P., Fallgatter, A.J.: Event-related functional near-infrared spectroscopy (fNIRS): Are the measurements reliable? Neuroimage. 31, 116–124 (2006). https://doi.org/https://doi.org/10.1016/j.neuroimage.2005.12.008
    57. Donnellan-Fernandez, K., Ioakim, A., Hordacre, B.: Revisiting dose and intensity of training: Opportunities to enhance recovery following stroke. Journal of Stroke and Cerebrovascular Diseases. 31, 106789 (2022). https://doi.org/https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106789
    58. 機械手臂介入對改善中風病患上肢動作與日常生 活表現功能之療效:隨機控制型研究 Effects of Robot-Assisted Training on the Improvement of the Upper Limb Motor and Activity of Daily Living functions in Patients with Stroke: a Randomized Block Design Study 研 究 生:莫普淳 指導教授:郭立杰 教授 中華民國一百零四年七.
    59. Ueki, S., Kawasaki, H., Ito, S., Nishimoto, Y., Abe, M., Aoki, T., Ishigure, Y., Ojika, T., Mouri, T.: Development of a Hand-Assist Robot With Multi-Degrees-of-Freedom for Rehabilitation Therapy. IEEE/ASME Transactions on Mechatronics. 17, 136–146 (2012). https://doi.org/10.1109/TMECH.2010.2090353
    60. Liu, Y., Guo, S., Yang, Z., Hirata, H., Tamiya, T.: A Home-based Tele-rehabilitation System With Enhanced Therapist-patient Remote Interaction: A Feasibility Study. IEEE J Biomed Health Inform. 26, 4176–4186 (2022). https://doi.org/10.1109/JBHI.2022.3176276
    61. Dong, M., Fan, W., Li, J., Zhang, P.: Patient-Specific Exercises with the Development of an End-Effector Type Upper Limb Rehabilitation Robot. J Healthc Eng. 2022, (2022). https://doi.org/10.1155/2022/4125606
    62. Kyrkjebø, E., Laastad, M.J., Stavdahl, Ø.: Feasibility of the UR5 Industrial Robot for Robotic Rehabilitation of the Upper Limbs After Stroke.
    63. Jeon, S.Y., Ki, M., Shin, J.-H.: Resistive versus active assisted robotic training for the upper limb after a stroke: A randomized controlled study. Ann Phys Rehabil Med. 67, 101789 (2024). https://doi.org/https://doi.org/10.1016/j.rehab.2023.101789
    64. Domrös, F., Störkle, D., Ilmberger, J., Kuhlenkötter, B.: A motion library for robot-based upper limb rehabilitation. In: Biosystems and Biorobotics. pp. 409–413. Springer International Publishing (2013)
    65. Fernandes, L., Lima, J., Leitão, P., Nakano, A.: Using a Collaborative Robot to the Upper Limb Rehabilitation. Presented at the January 1 (2020)
    66. Sheng, B.O., Xie, S., Tang, L., Deng, C., Zhang, Y.: An Industrial Robot-based Rehabilitation System for Bilateral Exercises.
    67. Zhang, H., Song, T., Zhang, L.: Assistance control strategy for upper-limb rehabilitation robot based on motion trend. Mechanical Sciences. 14, 503–518 (2023). https://doi.org/10.5194/ms-14-503-2023
    68. Lee, B.O., Saragih, I.D., Batubara, S.O.: Robotic arm use for upper limb rehabilitation after stroke: A systematic review and meta-analysis, (2023)
    69. Semprini, M., Scano, A., Li lizengyong, Z., Zulin Dou, nrcrtacn: Effects of robot-assisted task-oriented upper limb motor training on neuroplasticity in stroke patients with different degrees of motor dysfunction: A neuroimaging motor evaluation index.
    70. Semprini, M., Scano, A., Li lizengyong, Z., Zulin Dou, nrcrtacn: Effects of robot-assisted task-oriented upper limb motor training on neuroplasticity in stroke patients with different degrees of motor dysfunction: A neuroimaging motor evaluation index.
    71. Klein, F., Debener, S., Witt, K., Kranczioch, C.: fMRI-based validation of continuous-wave fNIRS of supplementary motor area activation during motor execution and motor imagery. Sci Rep. 12, (2022). https://doi.org/10.1038/s41598-022-06519-7
    72. Cui, X., Bray, S., Bryant, D.M., Glover, G.H., Reiss, A.L.: A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage. 54, 2808–2821 (2011). https://doi.org/10.1016/j.neuroimage.2010.10.069
    73. Leff, D.R., Orihuela-Espina, F., Elwell, C.E., Athanasiou, T., Delpy, D.T., Darzi, A.W., Yang, G.Z.: Assessment of the cerebral cortex during motor task behaviours in adults: A systematic review of functional near infrared spectroscopy (fNIRS) studies, (2011)
    74. Soekadar, S.R., Kohl, S.H., Mihara, M., von Lühmann, A.: Optical brain imaging and its application to neurofeedback. Neuroimage Clin. 30, (2021). https://doi.org/10.1016/j.nicl.2021.102577
    75. Oosterwijk, A.M., Nieuwenhuis, M.K., van der Schans, C.P., Mouton, L.J.: Shoulder and elbow range of motion for the performance of activities of daily living: A systematic review. Physiother Theory Pract. 34, 505–528 (2018). https://doi.org/10.1080/09593985.2017.1422206
    76. NIRSCap User Guide. (2019)
    77. Yücel, M.A., Selb, J., Aasted, C.M., Lin, P.-Y., Borsook, D., Becerra, L., Boas, D.A.: Mayer waves reduce the accuracy of estimated hemodynamic response functions in functional near-infrared spectroscopy. Biomed Opt Express. 7, 3078 (2016). https://doi.org/10.1364/boe.7.003078
    78. Luke, R., Shader, M.J., McAlpine, D.: Characterization of Mayer-wave oscillations in functional near-infrared spectroscopy using a physiologically informed model of the neural power spectra. Neurophotonics. 8, (2021). https://doi.org/10.1117/1.nph.8.4.041001
    79. Lin, P.Y., Lin, S.I., Chen, J.J.J.: Functional near infrared spectroscopy study of age-related difference in cortical activation patterns during cycling with speed feedback. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 20, 78–84 (2012). https://doi.org/10.1109/TNSRE.2011.2170181
    80. Arash Salarian: Interclass Correlation Coefficient (ICC)
    81. Field, A.: Discovering statistics using IBM SPSS statistics. sage (2013)
    82. Pinti, P., Scholkmann, F., Hamilton, A., Burgess, P., Tachtsidis, I.: Current Status and Issues Regarding Pre-processing of fNIRS Neuroimaging Data: An Investigation of Diverse Signal Filtering Methods Within a General Linear Model Framework. Front Hum Neurosci. 12, (2019). https://doi.org/10.3389/fnhum.2018.00505
    83. Peng, Y., Li, C., Chen, Q., Zhu, Y., Sun, L.: Functional Connectivity Analysis and Detection of Mental Fatigue Induced by Different Tasks Using Functional Near-Infrared Spectroscopy. Front Neurosci. 15, (2022). https://doi.org/10.3389/fnins.2021.771056
    84. Skau, S., Bunketorp-Käll, L., Kuhn, H.G., Johansson, B.: Mental fatigue and functional near-infrared spectroscopy (fNIRS) – Based assessment of cognitive performance after mild traumatic brain injury. Front Hum Neurosci. 13, (2019). https://doi.org/10.3389/fnhum.2019.00145
    85. Ding, H., Seusing, N., Nasseroleslami, B., Anwar, A.R., Strauss, S., Lotze, M., Grothe, M., Groppa, S., Muthuraman, M.: The role of ipsilateral motor network in upper limb movement. Front Physiol. 14, (2023). https://doi.org/10.3389/fphys.2023.1199338
    86. Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T.: Technique to investigate ipsilateral functional activation in motor task. In: Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. pp. 2246–2247 vol.5 (1996)
    87. Yoshida, K., Sawamura, D., Inagaki, Y., Ogawa, K., Ikoma, K., Sakai, S.: Brain activity during the flow experience: A functional near-infrared spectroscopy study. Neurosci Lett. 573, 30–34 (2014). https://doi.org/10.1016/j.neulet.2014.05.011
    88. 王俞婷: 結合音樂節奏的手部訓練系統對大腦活化之影響 = Music Assisted Hand Training System for Brain Activation, (2022)
    89. Shima, K., Tanji, J.: Both Supplementary and Presupplementary Motor Areas Are Crucial for the Temporal Organization of Multiple Movements. J Neurophysiol. 80, 3247–3260 (1998). https://doi.org/10.1152/jn.1998.80.6.3247
    90. Lu, F., Yuan, Z.: Cortical changes of hemodynamic signals during motor skill learning: a functional NIRS study. In: TENCON 2015 - 2015 IEEE Region 10 Conference. pp. 1–5 (2015)
    91. Rahimpour, S., Rajkumar, S., Hallett, M.: The Supplementary Motor Complex in Parkinson’s Disease. (2022). https://doi.org/10.14802/jmd.21075/J
    92. Zhang, S., Ide, J.S., Li, C.S.R.: Resting-state functional connectivity of the medial superior frontal cortex. Cerebral Cortex. 22, 99–111 (2012).
    93. Lemon, R.N.: The G. L. Brown Prize Lecture. Cortical control of the primate hand. Exp Physiol. 78, 263–301 (1993).
    94. Chouinard, P.A., Leonard, G., Paus, T.: Role of the primary motor and dorsal premotor cortices in the anticipation of forces during object lifting. Journal of Neuroscience. 25, 2277–2284 (2005).
    95. Ward, N.S., Frackowiak, R.S.J.: Age-related changes in the neural correlates of motor performance. (2003)
    96. Riecker, A., Gröschel, K., Ackermann, H., Steinbrink, C., Witte, O., Kastrup, A.: Functional significance of age-related differences in motor activation patterns. Neuroimage. 32, 1345–1354 (2006).
    97. Mattay, V.S., Fera, F., Tessitore, A., Hariri, A.R., Das, S., Callicott, J.H., Weinberger, D.R.: Neurophysiological correlates of age-related changes in human motor function. Neurology. 58, 630–635 (2002).

    無法下載圖示 校內:2029-08-26公開
    校外:2029-08-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE