| 研究生: |
陳亞嵐 Chen, Ya-Lan |
|---|---|
| 論文名稱: |
近岸風浪推算資料同化之研究 A Study of Data Assimilation on Nearshore Wind Wave Hindcasting |
| 指導教授: |
歐善惠
Ou, Shan-Hwei 許泰文 Hsu, Tai-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 資料同化 、有限元素法 、風浪 |
| 外文關鍵詞: | Finite Element Method, wind waves, data assimilation |
| 相關次數: | 點閱:119 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要以波浪作用力方程式之通式為架構,利用有限元素法為解析方式,進行近岸波浪數值模式資料同化,以提高模式推算的準確性。本文選擇最佳內插法作為資料同化的方法,以線性疊加方式表示預測值、實測值和起始猜測值的關係,再用最佳權重的觀念決定修正值,增加風浪模式的預測能力。經過均勻風場測試及驗證實際海面波浪場發現,在均勻風場條件下,本文模式能有效修正風場估計的誤差,改善模式的起始推算。對於校正長度 Lmax 之選擇,以6~8倍的格網長度有最佳的權重分配,能使資料同化推算誤差為最小,且當測站數目大於7時,同化分析的修正效果趨於穩定。在推算颱風波浪方面,本文模式在模擬能力較高的東部海域,資料同化能有效提高模式推算之準確度。
A revised SWAN model based on the data assimilation technique is developed by using the Finite Element Method (FEM). In the present FEM code the numerical scheme of the original SWAN model is improved to ensure the effectiveness of the computation at every operational stage. To enhance the efficiency of the numerical simulation, the existing experimentally observed data are combined with the first guess values upon linearizing by optimal interpolation. The data assimilation technique reduces the error in the wind field evaluation by using the optimal weighting, in which the correction length is chosen to be 6~8 times that of the gird length. Numerical tests show that the data assimilation analysis tends to be stable as the number of observations is lager than seven. The present model is also successfully applied to the wind wave forecasting at the eastern coast of Taiwan. The results indicate that the present model is applicable to predict typhoon waves efficiently and accurately.
1. Aouf, L., J-M. Lefèvre and D. Hauser, “Optimization of the Assimilation Scheme of Directional Wave Spectra in Wave Model WAM: Application to Real ASAR-ENVISAT Wave Spectra”, Proc. 13th ISOPE Conf., Honolulu, USA, (2003).
2. Bauer, E., S. Hasselmann, I.R. Young and K. Hasselmann, “Data Assimilation into a Wave Prediction Model,” 25th General Assembly of the European Geophysical Society, Copenhagen, 23-27 April, (1990).
3. Bauer, E., S. Hasselmann and K. Hasselmann, “Validation and Assimilation of Seaset Altimeter Wave Heights Using the WAM Wave Model,” J. Geophys. Res., 97, pp. 12671-12682 (1992).
4. Bertotti, L. and L. Cavaleri, “Accuracy of Wind and Wave Evaluation in Coastal Regions,” Proc. 24th Int. Conf. Coastal Eng., pp. 57-67 (1994).
5. Booij, N., L.H. Holthuijsen and R.C. Ris, “The SWAN Wave Model for Shallow Water,” Proc. 25th Int. Conf. Coastal Eng., pp. 668-676 (1996).
6. Boris, J.P. and D.L. Book, “Flux Corrected Transport I, SHASTA, A Fluid Transport Algorithm that Works,” J. Comp. Physics, 11, pp. 38-69 (1973).
7. Bretherton, F.P. and C.J.R. Garrett, “Wave Trains in Inhomogeneous Moving Media,” Proc. Roy. Soc. Lon., A302, pp. 529-554 (1968).
8. Bretschneider, C.L., “The Generation and Decay of Wind Waves in Deep Water,” Transaction American Geophysical Union, 33, No. 3, pp. 202-237 (1952).
9. De Las Heras, M.M. and P.A.E.M. Janssen, “Data Assimilation with a Coupled Wind-Wave Model,” J. Geophys. Res., 97, pp. 20261-20270 (1992).
10. De Valk, C.F. and C.J. Calkoen, “Wave Data Assimilation in a Third Generation Wave Prediction Model for the North Sea – An Optimal Control Approach,” Delft Hydraul. Lab., Delft, Netherlands, Rep. X38, pp. 123 (1989).
11. Donea, J., “A Taylor-Galerkin Method for Convective Transport Problem,” Int. J. Num. Meth. Eng., 20, pp. 101-119 (1984).
12. Gandin, L.S., Objective Analysis of Meteorological Fields, Gidrometeoizdat, Leningrd, pp. 242 (1963).
13. Hasselmann, K., T.P. Barnett, E. Bouws, H. Carlson, D.E. Cartwright, K. Enke, J.A. Ewing, H. Gienapp, D.E. Hasselmann, P. Kruseman, A. Meerburg, P. Müller, D.J. Olbers, K. Richter, W. Sell and H. Walden, “Measurements of Wind-Wave Growth and Swell Decay during the Joint North Sea Wave Project (JONSWAP),” Dtsch. Hydrogr. Z. Suppl. 12, A8 (1973).
14. Hasselmann, K., “On the Spectral Dissipation of Ocean Waves due to Whitecapping,” Boundary-Layer Meteorology, 6, pp. 107-127 (1974).
15. Hasselmann, K., D.B. Ross, P. Müller and W. Sell, “A Parametric Wave Prediction Model,” J. Phys. Oceanogr., 6, pp. 199-228 (1976).
16. Hasselmann, S., K. Hasselmann, J.H. Allender and T.P. Barnett, “Computations and Parameterizations of the Linear Energy Transfer in a Gravity Wave Spectrum. Part
II : Parameterizations of the Nonlinear Transfer for Application in Wave Models,” J. Phys. Oceanogr., 15, pp. 1378-1391 (1985).
17. Hasselmann, K., S. Hasselmann, E. Bauer, C. Brüning, S. Lehner, H.C. Graber and P. Lionello, “Development of a Satellite SAR Image Spectra and Altimeter Wave Height Data Assimilation System for ERS-1,” Final Report ESA Study Contract No. 6875/87/HGE-I(SC), Max-Planck-Institut für Meteorologie, Report No. 19, pp. 155 (1988).
18. Hasselmann, S., P. Lionello and K. Hasselmann, “An Optimal Interpolation Scheme for the Assimilation of Spectral Wave Data,” J. Geophys. Res., 102, pp. 15823-15836 (1997).
19. Holland, G.J., “An Analytical Model of the Wind and Pressure Profiles in Hurricanes,” Monthly Weather Review, 108, pp. 1212-1218 (1980).
20. Hsu, T.W., S.H. Ou and J.M. Liau, “Hindcasting Nearshore Wind Waves Using a FEM Code for SWAN,” Coastal Eng. (Submited).
21. Janssen, P.A.E.M., P. Lionello, M. Reistad and A. Hollingsworth, “Hindcasts and Data Assimilation Studies with the WAM Model During the SEASET Period,” J. Geophys. Res., 94, pp. 973-993 (1989).
22. Komen, G. J., S. Hasselmann, and K. Hasselmann, “On the Existence of a Fully Developed Wind-Sea Spectrum,” J. Phys. Oceanogr., 14, pp. 1271-1285 (1984).
23. Komen, G.J., “Introduction to Wave Models and Assimilation of Satellite Data in Wave Models, In: The Use of Satellite Data in Climate Models,” Proc. Alpbach Conference, ESA Pub., ESA SP, 244, pp. 21-26 (1985).
24. Komen, G.J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann and P.A.E.M. Janssen, Dynamics and Modeling of Ocean Waves, Cambridge University Press, pp. 532 (1994).
25. Lionello, P., H. Günther and P.A.E.M. Janssen, “Assimilation of Altimeter Data in a Global Third Generation Wave Model,” J. Geophys. Res., 97, pp. 14253-14474 (1992).
26. Lionello, P., H. Günther and B. Hansen, “A Sequential Assimilation Scheme Applied to Global Wave Analysis and Prediction,” J. Mar. Syst., 6, pp. 87-107 (1995).
27. Ou., S.H., J.M. Liau, T.W. Hsu and S.Y. Tzang, “Simulating Typhoon Waves by SWAN Wave Model in Coastal Waters of Taiwan,” Ocean Eng., 29, pp. 947-971 (2002).
28. Pierson, W.J., G. Neumann and R.W. James, “Practical Method for Observing and Forecasting Ocean Waves by Means of Wave Spectra and Statistics,” US Navy Hydrographic Office, Pub. 603, pp. 284 (1955).
29. Phillips, O.M., “Spectral and Statistical Properties of the Equilibrium Range in Wind-Generated Gravity Waves,” J. Fluid Mech., 156, pp. 505-531 (1985).
30. Selmin, V., J. Donea and L. Quartapelle, “Finite Element Methods for Nonlinear Advection,” Comp. Meth. Appl. Mech. Eng., 52, pp. 817-845. (1985).
31. Sverdrup, H.U. and W.H. Munk, “Wind, Sea and Swell, Theory of Relation for Forecasting,” US Navy Hydrographic Office, Pub. 601, pp. 44 (1947).
32. SWAMP Group, Ocean Wave Modeling, Plenum Press,
New York, pp. 255 (1985).
33. Thomas, J.P., “Retrieval of Energy Spectra from Measured Data for Assimilation into a Wave Model,” Q. J.
R. Meteorol. Soc., 114, pp. 781-800 (1988).
34. Wang, Y., and Z. Yu, “An Attempt to Improve SWAN Model,” Proc. 4th Workshop on Ocean Models for the APEC Region, Tainan, pp. 3-1 - 3-3. (2000).
35. WAMDI Group, “The WAM Model – A Third Generation Ocean Wave Prediction Model,” J. Phys. Oceanogr., 18, pp. 1775-1810 (1988).
36. Willebrand, J., “Energy Transport in a Nonlinear and Inhomogeneous Random Gravity Wave Field,” J. Fluid Mech., 70, pp. 113-126 (1975).
37. Wilson, B.W., “Graphical Approach to The Forecasting of Waves in Moving Fetches,” US Army Corps of Engineers, Beach Erosion Board Tech. Memo., 73. pp. 1-31 (1955).
38. Wu, J., “Wind-Stress Coefficients over Sea Surface from Breeze to Hurricane,” J. Geophys. Res., 87, pp. 9704-9706 (1982).
39. Yanenko, N.N., The method of fractional steps, Springer-Verlag. (1971).
40. 歐善惠、許泰文、臧效義、方介群、廖建明,「應用 SWAN 波浪模式推算台灣附近海域颱風波浪之研究」,第二十一屆海洋工程研討會論文集, 87頁 - 95頁 (1999)。
41. 廖建明,「近岸風浪推算之研究」,國立成功大學水利及海洋工程研究所博士論文 (2001)。
42. 廖建明、許泰文、溫志中、鄧秋霞,「近岸風浪模擬之研究」,第十二屆水利工程研討會,I-52頁 – I-59頁 (2001)。