簡易檢索 / 詳目顯示

研究生: 丁信文
Ting, Hsin-Wen
論文名稱: 類比數位轉換器之測試方法開發及內建自我測試電路設計
Development of Test Method and Design of Built-In Self-Test for Analog-to-Digital Converters
指導教授: 劉濱達
Liu, Bin-Da
張順志
Chang, Soon-Jyh
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 108
中文關鍵詞: 轉換器內建自我測試信號產生器正弦波直方圖輸出響應分析
外文關鍵詞: sine-wave histogram, output response analyzer, stimulus generator, built-in self-test, converter
相關次數: 點閱:148下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要針對類比數位轉換器(ADC)電路開發內建自我測試(BIST)方法並且進一步分析與設計ADC電路之內建自我測試電路。
    在測試信號產生器電路設計方面,本論文提出一種以震盪器(Oscillator)為基礎之可重建式(Reconfigurable)正弦波產生器電路。其原理便是將一個可重建式調變器(Modulator)操作在不同的模式(Mode)以產生不同頻率範圍的正弦波測試信號以及此信號之數位參考(Reference)信號。因此不需要額外的電路便能產生直接比對之ADC BIST架構中所需要的參考樣本(Pattern)。此外,所產生之測試信號相對於純粹利用類比信號產生器而言更能精確控制。將此提出之信號產生器所產生的測試信號應用到一個六位元管線式(Pipelined)ADC所得到之測試結果與在理想測試信號下的測試結果在頻譜分析(Spectral analysis)下比較,也得到一致的測試結果。
    在輸出響應分析部份,本論文提出一種「改良式ADC正弦波直方圖測試方法」(Modified ADC sine-wave histogram testing method),藉由分析ADC電路在正弦波直方圖測試方法下所得到的靜態參數(Static parameter)之結果來預估ADC電路「信號雜訊比(SNR)之減少(Degradation)量」。相較於傳統上欲完整驗證ADC電路之整體效能,不但需要執行直方圖分析還需要執行快速傅立葉轉換(Fast Fourier Transform, FFT)之頻譜分析才能得到動態參數的資訊,所提出之方法能夠更加有效並降低成本。基於此提出之測試方法,利用座標軸旋轉數位計算器 (Coordinate Rotation Digital Computer, CORDIC)演算法去設計供參考用的弦波直方圖(Sine-wave histogram)計算器及估算ADC電路之效能的計算電路來實現一種ADC電路之輸出響應分析(Output response analyzer, ORA)電路。所開發之輸出響應分析電路使用0.18-m 製程技術合成,並且將其實際應用於一個商用8位元ADC(AD 7822)的量測,來對所開發之電路進行完整的驗證。

    In this dissertation, we develop an effective built-in self-test (BIST) structure and design the corresponding BIST circuit for analog-to-digital converters (ADCs).
    In the analysis and design of test stimulus generator circuit for ADC BIST, an oscillator-based reconfigurable sinusoidal signal generator is proposed. The concept of this proposed stimulus generator is to reconfigure the modulator into different operation mode to generate the test stimulus which has a wide range of frequency. In addition, not only the test stimulus but also the digital reference signal can be generated concurrently. Therefore, a direct comparison-based ADC BIST structure can be perform to compare the ADC output code and the concurrently generated digital reference pattern without extra area overhead. Compared with pure analog sinusoidal test stimulus generator, the generated signal’s quantities can be precisely controlled. A practical ADC BIST for a 6-bit pipelined ADC is designed by using the proposed oscillator-based reconfigurable sinusoidal signal generator as the excitation generator. The simulations of the testing results, by applying the generated stimulus, shows a good agreement to the testing result with ideal stimulus in the spectrum analysis.
    In the development of output response analyzer (ORA) for ADC BIST, a modified sine-wave histogram testing method for ADCs is proposed. This method analyzes the relationships between the estimated degradation of the SNR value and the test results obtained by using the sine-wave histogram test. Conventionally, not only the analysis of histograms but also the spectral analyses have to be carried out to get the information of the overall parameters. The modified ADC sine-wave histogram testing method can be more effective and lower costs. An ADC ORA circuit, using the COordinate Rotation Digital Computer (CORDIC) technique, is analyzed and designed based on the proposed modified test method. The CORDIC technique is used to not only realize a reference sine-wave histogram calculator but also perform an ADC parameter evaluator. The developed ORA circuit is synthesized in a 0.18-m technology and applied to an 8-bit commercial ADC, AD 7822, to verify our designs.

    Contents List of Tables v List of Figures vi CHAPTER 1 Introduction 1 1.1 Motivation 1 1.2 Organization of the dissertation 5 CHAPTER 2 Fundamentals of Analog-to-Digital Converter Testing 6 2.1 Performance Metrics of ADCs 7 2.2 Testing of ADCs 12 2.2.1 Back-to-Back ADC Testing 12 2.2.2 Crossplot Measurement of ADC 13 2.2.3 ADC Servo-Loop Code transition Test 14 2.2.4 Envelop Test and Beat Frequency Test 15 2.2.5 Fast Furier Transform Based ADC Testing 18 2.2.6 ADC Sine-Wave Fitting 24 2.3 Summary 26 CHAPTER 3 Oscillator-Based Reconfigurable Sinusoidal Signal Generator 27 3.1 An Oscillator-Based Reconfigurable Sinusoidal Signal Generator 28 3.1.1 The Oscillator 28 3.1.2 Oscillator-Based Reconfigurable Signal Generator 30 3.1.3 Simulation Result 37 3.2 A Practical ADC BIST 44 3.2.1 A 6-bit 250 Msample/s Pipelined A/D Converter 44 3.2.2 Stimulus Generator 50 3.2.3 Application in a SOC Test Platform 58 3.3 Summary 62 CHAPTER 4 Modified Sine-Wave Histogram Testing 63 4.1 Introduction and Background 63 4.1.1 Linear Ramp-Base Histogram Test 64 4.1.2 Sine-Wave Histogram Test 66 4.2 Modified ADC Sine-Wave Histogram Testing Structure 69 4.2.1 Relationships among ADC Performance 69 4.2.2 Considerations of the Sine-Wave Histogram Test Parameters 73 4.2.3 Development of an ADC Output Response Analyzer Circuit 77 4.3 Simulation and Experimental Result 93 4.4 Summary 96 CHAPTER 5 Conclusions and Future Works 97 5.1 Conclusions 97 5.2 Future Works 99 References 100 Publication List 107

    References
    [1] International Technology Roadmap for Semiconductors. [Online]. Available: http://public.itrs.net/
    [2] H. Ihs, K. Arabi, and B. Kaminska, “Testing digital to analog converters based on oscillation-test strategy using sigma-delta modulation,” in Proc. IEEE Int. Conf. Comput. Design, Oct. 1998, pp. 40-46.
    [3] F. Stefani, D. Macii, A. Moschitta, P. Carbone, and D. Petri, “Simple and time-effective procedure for ADC INL estimation,” IEEE Trans. Instrum. Meas., vol. 55, pp. 1383-1389, Aug. 2006.
    [4] H. C. Hong, “A design-for-digital-testability circuit structure for - modulators,” IEEE Trans. VLSI Syst., vol. 15, pp. 1341-1350, Dec. 2007.
    [5] H. W. Ting, B. D. Liu, and S. J. Chang, “A histogram-based testing method for estimating A/D converter performance,” IEEE Trans. Instrum. Meas., vol. 57, pp. 420-427, Feb. 2008.
    [6] H. W. Ting, B. D. Liu, and S. J. Chang, “A time domain built-in self-test methodology for SNDR and ENOB tests of analog-to-digital converters,” in Proc. IEEE Asian Test Symp., Nov. 2004, pp. 52-57.
    [7] D. Lee, K. Yoo, K. Kim, G. Han, and S. Kang, “Code-width testing-based compact ADC BIST circuit,” IEEE Trans. Circuits Syst. II, vol. 51, pp. 603-606, Nov. 2004.
    [8] F. Azais, S. Bernard, Y. Bertrand, and M. Renovell, “Optimizing sinusoidal histogram test for low cost ADC BIST,” J. Electron. Test.: Theory Appl., vol.17, pp. 255-266, Aug. 2001.
    [9] J. L. Huang, C. K. Ong, and K. T. Cheng, “A BIST scheme for on-chip ADC and DAC testing,” in Proc. IEEE Design Automat. Conf., Mar. 2000, pp. 216-220.
    [10] K. J. Lee, S. J. Chang, and R. S. Tzeng, “A sigma-delta modulation based BIST scheme for A/D converters,” in Proc. IEEE Asian Test Symp., Dec. 2003, pp. 124-127.
    [11] A. Sabatini and P. Carbone, “Measurement of static ADC nonlinearities using the servoloop method,” IEEE Trans. Instrum. Meas., vol. 55, pp. 1772-1777, Oct. 2006.
    [12] U. Eduri and F. Maloberti, “Online calibration of a Nyquist-rate analog-to-digital converter using output code-density histograms,” IEEE Trans. Circuits. Syst. I, vol. 51, pp. 15-24, Jan. 2004.
    [13] R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI Design Techniques for Analog and Digital Circuits, New York: McGraw-Hill, 1990.
    [14] A. S. Sedra and K.C. Smith, Microelectronic Circuits, New York: Oxford University Press, 1998.
    [15] A. K. Lu, G.W. Roberts, and D. A. Jones, “A high-quality analog oscillator using oversampling D/A conversion techniques,” IEEE Trans. Circuits Syst. II, vol. 41, pp. 437-444, July 1994.
    [16] B. R. Veillette and G. W. Roberts, “Delta-sigma oscillators: versatile building blocks,” Int. J. Circuit Theory App., vol.25, pp. 407-418, Sep. 1997.
    [17] C. Rebai and D. Dallet, “High order 1-bit digital sigma delta modulator for on chip analogue signal sources,” in Proc. IEEE Int. Symp. Circuits and Syst., May 2003, pp. 913-916.
    [18] B. R. Veillette and G. W. Roberts, “High frequency sinusoidal generation using delta-sigma modulation techniques,” in Proc. IEEE Int. Symp. Circuits and Syst., May 1995, pp. 637-640.
    [19] M. F. Toner and G.W. Roberts. “A BIST scheme for an SNR test of a sigma-delta ADC,” in Proc. IEEE Int. Test Conf., Oct.1993, pp. 805-814.
    [20] M. F. Toner and G. W. Roberts, “A BIST scheme for a SNR, gain tracking and frequency response test of a sigma-delta ADC,” IEEE Trans. Circuits Syst. II, vol. 42, pp.1-15, Jan. 1995.
    [21] M. F. Toner and G.W. Roberts. “A frequency response, harmonic distortion, and frequency response test of a sigma-delta ADC,” IEEE Trans. Circuits Syst. II, vol. 43, pp. 608-613, Aug. 1996.
    [22] K. L. Parthasarathy, L. Jin, T. Kuyel, D. Price, D. Chen, and R. L. Geiger, “Accurate self characterization and correction of A/D converter performance,” in Proc. IEEE Int. Symp. Circuits and Syst., Aug. 2003, pp. 537-540.
    [23] L. Jin, K. Parthasarathy, T. Kuyel, D. Chen, and R. L. Geiger, “Linearity testing of precision analog-to-digital converters using stationary nonlinear inputs,” in Proc. IEEE Int. Test Conf., Oct. 2003, pp. 218–227.
    [24] L. Jin, K. Parthasarathy, T. Kuyel, D. Chen, and R. L. Geiger, “Accurate testing of analog-to-digital converters using low linearity signals with stimulus error identification and removal,” IEEE Trans. Instrum. Meas., vol. 54, pp. 1188-1199, June 2005.
    [25] B. Olleta, H. Jiang, D. Chen, and R. L. Geiger, “Testing high resolution ADCs using deterministic dynamic element matching,” in Proc. IEEE Int. Symp. Circuits Syst., May 2004, pp. 924-927.
    [26] B. Olleta, H. Jiang, D. Chen, and R. Geiger, “A deterministic dynamic element matching approach for testing high-resolution ADCs with low-accuracy excitations,” IEEE Trans. Instrum. Meas., vol. 55, pp. 902-915, June 2006.
    [27] H. Jiang, D. Chen, and R. Geiger, “Deterministic DEM DAC performance analysis,” in Proc. IEEE Int. Symp. Circuits Syst., May 2007, pp. 3860-3863.
    [28] H. Jiang, B. Olleta, D. Chen, and R. Geiger, “Testing high resolution ADCs with low-resolution/accuracy deterministic dynamic element matched DACs,” IEEE Trans. Instrum. Meas., vol. 56, pp. 1753-1762, Oct. 2007.
    [29] J. Doernberg, H. S. Lee, and D. A. Hodges, “Full-speed testing of A/D converter,” IEEE J. Solid-State Circuits, vol. 19, pp. 820-827, Dec. 1984.
    [30] J. Blair, “Histogram measurement of ADC nonlinearities using sine waves,” IEEE Trans. Instrum. Meas., vol.43, pp. 373-383, June 1994.
    [31] M. Mahoney, DSP-Based Testing of Analog and Mixed-Signal Circuits. Los Alamitos, California: IEEE Computer Society Press, 1987.
    [32] P. Carbone and D. Petri, “ADC sinewave histogram testing with quasi-coherent sampling,” IEEE Trans. Instrum. Meas., vol. 50, pp. 949-953, Aug. 2001.
    [33] F. A. C. Alegria and A. C. Serra, “Variance of the cumulative histogram of ADCs due to frequency errors” IEEE Trans. Instrum. Meas., vol. 52, pp. 69-74, Feb. 2003.
    [34] J. Blair, “Selecting test frequencies for sinewave tests of ADCs” IEEE Trans. Instrum. Meas., vol. 54, pp. 73-78, Feb. 2005
    [35] F. Adamo, F. Attivissimo, and N. Giaquinto, “FFT test of A/D converters to determine the integral nonlinearity,” IEEE Trans. Instrum. Meas., vol. 51, pp. 1050-1054, Oct. 2002.
    [36] F. Adamo, N. Giaquinto, and I Kale, “INL reconstruction of A/D converters via parameteric spectral estimation,” IEEE Trans. Instrum. Meas., vol. 53, pp. 940-946, Aug. 2004.
    [37] M.G. Flore, M. Negreiros, and L. Carro, “INL and DNL estimation based on noise for ADC test,” IEEE Trans. Instrum. Meas., vol. 53, pp. 1391-1395, Oct. 2004.
    [38] Terminology and Test Methods for Analog-to-Digital Converters, 2001, Piscataway, NJ: IEEE, IEEE Std. 1241-2000.
    [39] Digitizing Waveform Recorders, 1994, New York: IEEE, IEEE Std. 1057-1994 (R2001).
    [40] H. E. Hilton, “A10-MHz analog-to-digital converter with 110-dB linearity,” Hewlett-Packard J., pp. 105-112, Oct. 1993.
    [41] J. Schoukens, “A critical note on histogram testing of data acquisition channels,” IEEE Trans. Instrum. Meas., vol. 44, pp. 860-863, Aug. 1995.
    [42] M. F. Wagdy and Selim S. Awad, “Determining ADC effective number of bits via histogram testing,” IEEE Trans. Instrum. Meas., vol. 40, pp. 770-772, Aug. 1991.
    [43] B. Vargha, J. Schoukens, Y. Rolain, “Static nonlinearity testing of digital-to-analog converters,” IEEE Trans. Instrum. Meas., vol. 50, pp. 1283-1288, Oct. 2001.
    [44] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital, Memory and Mixed-signal VLSI Circuits. Boston, MA: Kluwer, 2000.
    [45] M. Burns and G. W. Roberts, An Introduction to Mixed-Signal IC Test and Measurement. New York: Oxford, 2001.
    [46] D. Dallet and J. M. D. Silva, Dynamic Characterisation of Analogue-to-Digital Converters. Dordrecht, The Netherlands: Kluwer, 2005.
    [47] H. W. Ting, B. D. Liu, and S. J. Chang, “Histogram based testing strategy for ADC,” in Proc. IEEE Asian Test Symp., Nov. 2006, pp. 51-54.
    [48] M. D. Ercegovac and T. Lang, Digital Arithmetic. San Mateo, CA: Morgan Kaufmann, 2004.
    [49] Y. H. Hu, “CORDIC-based VLSI architectures for digital signal processing,” IEEE Signal Processing Mag., vol. 9, pp. 16-35, Jul. 1992.
    [50] C. Mazenc, X. Merrheim, and J. M. Muller, “Computing functions cos-1 and sin-1 using CORDIC,” IEEE Trans. Comput., vol. 42, pp. 118-122, Jan. 1993.
    [51] R. J. Baker, CMOS Mixed-Signal Circuit Design. New York: IEEE Press, 2002.
    [52] W. Kester, The Data Conversion Handbook. Analog Devices, 2005.
    [53] B. Razavi, Principle of Data Conversion System Design, New York: IEEE Press, 1995.
    [54] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. New York: Oxford, 2002.
    [55] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: Wiley, 1997.
    [56] Rudy van de Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters. Boston, MA: Kluwer, 2003.
    [57] L.T. Wang, C.W. Wu, and X. Wen, VLSI Test Principles and Architectures Design for Testability. San Francisco, CA: Morgan Kaufmann, 2006.
    [58] K. Hejn and A. Pacut, “Effective resolution of analog to digital converters,” IEEE Instrum. Meas. Mag., vol. 6, pp. 48-55, Sep. 2003.
    [59] K. Fowler, “Part 7: Analog-to-digital conversion in real-time systems,” IEEE Instrum. Meas. Mag., vol. 6, pp. 58-64, Sep. 2003.
    [60] M. J. Demler, High-Speed Analog-to-Digital Conversion, New York: Academic Press, 1991.
    [61] H. U. Koller, “New criterion for testing analog-to-digital converters for statistical evaluation,” IEEE Trans. Instrum. Meas., vol. 22, pp. 214-217, Sep. 1973.
    [62] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1999.
    [63] S. Rapuano and F. J. Harris, “An introduction to FFT and time domain windows,” IEEE Instrum. Meas Mag., vol. 10, pp. 32-44, Dec. 2007.
    [64] F. J. Harris, “On the use of windows for harmonic analysis with the Discrete Fourier Transform,” Proc. IEEE, vol. 66, pp. 51-83, Jan. 1978.
    [65] A. H. Nuttall, “Some windows with very good sidelobe behavior,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 29, pp. 84-91, Feb. 1981.
    [66] C. Offelli and D. Petri, “A frequency-domain procedure for accurate real-time signal parameter measurement,” IEEE Trans. Instrum. Meas., vol. 39, pp. 363-368, Apr. 1990.
    [67] O. M. Solomon, Jr., “The effects of windowing and quantization error on the amplitude of frequency-domain functions,” IEEE Trans. Instrum. Meas., vol. 41, pp. 932-937, Dec. 1992.
    [68] L. Benetazzo, C. Narduzzi, C. Offelli, and D. Petri, “A/D converter performance analysis by a frequency-domain approach,” IEEE Trans. Instrum. Meas., vol. 41, pp. 834-839, Dec. 1992.
    [69] O. M. Solomon, Jr., “The use of DFT windows in signal-to-noise ratio and harmonic distortion computations,” IEEE Trans. Instrum. Meas., vol. 43, pp. 194-199, Apr. 1994.
    [70] J. A. Mielke, “Frequency domain testing of ADCs,” IEEE Des. Test. Comput., vol. 13, pp. 64-69, spring 1996.
    [71] I. Kollár and J. Blair, “Improved determination of the best fitting,” IEEE Trans. Instrum. Meas., vol. 54, pp. 1978-1983, Oct. 2005.
    [72] Pintelon R. and J. Schoukens, An improved sinewave fitting procedure for characterizing data acquisition channels, IEEE Trans. Instrum. Meas., vol.45, pp. 588-593, Apr. 1996.
    [73] H. W. Ting, B. D. Liu, and S. J. Chang, “An on-chip concurrent high frequency analog and digital sinusoidal signal generator,” in Proc. IEEE Asia-Pacific Conf. Circuits and Syst., Dec. 2004, pp. 173-176.
    [74] H. W. Ting, C. W. Lin, B. D. Liu, and S. J. Chang, “Reconstructive oscillator based sinusoidal signal generator for ADC BIST,” in Proc. IEEE Asian Solid-State Circuits. Conf., Nov. 2005, pp. 65-68.
    [75] H. W. Ting, C. W. Lin, B. D. Liu, and S. J. Chang, “Oscillator-based reconfigurable sinusoidal signal generator for ADC BIST,” J. Electron. Test.: Theory Appl., vol. 23, pp.549-558, Dec. 2007.
    [76] D. A. Johns and D. M. Lewis, “Design and analysis of delta-sigma based IIR filters,” IEEE Trans. Circuits Syst. II, vol. 40, pp.233-240, Apr. 1993.
    [77] J. Silva, U. Moon, J. Steensgaard, and G.C. Temes, “Wideband low-distortion delta-sigma ADC topology,” Electron. Let. , vol. 37 pp. 737-738, June 2001.
    [78] K. Ishida and M. Fujishima, Chopper-stabilized high-pass sigma delta modulator utilizing a resonator structure,” IEEE Trans. Circuits Syst. II, vol. 50, pp. 627-631, Sep. 2003.
    [79] F. Azais, S. Bernard, Y. Bertrand, and M. Renovell, “Towards an ADC BIST scheme using the histogram test technique,” in Proc. IEEE European Test Workshop, May 2000, pp.53-58.
    [80] R. Schaumann and M. V. Valkenburg, Design of Analog Filters. New York: Oxford, 2001.
    [81] S. Sedra and P. O. Brackett, Filter Theory and Design: Active and Passive. Matrix Publishers, INC., 1978.
    [82] T. Cho, “Low-power, low-voltage, analog-to-digital converter technique using pipelined architectures,” Ph.D. Dissertation, University of California, Berkeley, 1995.
    [83] K. W. Cheng, “A 1.0-V, 10-bit CMOS pipelined analog-to-digital converter,” Master Thesis, National Taiwan University, 2002.
    [84] T. Cho and P. R. Gray, “A 10 b, 20 Msample/s, 35 mW pipeline of A/D converter,” IEEE J. Solid-State Circuits, vol. 30, pp. 166-172, Mat. 1995.
    [85] J. F. Lin, “A high speed pipelined A/D converter using modified time-shifted CDS technique,” Master Thesis, National Cheng Kung University, 2005.
    [86] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
    [87] O. Choksi and L. R. Carley, “Analysis of switched-capacitor common-mode feedback circuir,” IEEE Trans. Circuits Syst. II, vol. 50, pp.906-917, Dec. 2003.
    [88] C. S. Lin and B. D. Liu, “A low-power precomputation-based fully parallel content addressable memory,” IEEE J. Solid-State Circuits, vol. 38, pp. 654-662, Apr. 2003.
    [89] R. J. Tsai, H. W. Ting, C. S. Lin, and B. D. Liu, “A CAM/WTA-based high speed and low power longest prefix matching circuit design,” in Proc. IEEE Asia-Pacific Conf. Circuits and Syst., Dec. 2006, pp. 427-430.
    [90] C. Carbone and D. Petri, “Noise sensitivity of the ADC histogram test” IEEE Trans. Instrum. Meas., vol. 47, pp. 1001-1004, Aug. 1998.
    [91] A. Moschitta and D. Petri, “Stochastic properties of quantization noise in memoryless converters affected by integral non-linearity,” IEEE Trans. Instrum. Meas., vol. 43, pp. 1179-1183, Aug. 2004.

    下載圖示 校內:2014-06-30公開
    校外:2016-06-30公開
    QR CODE