簡易檢索 / 詳目顯示

研究生: 黃志傑
Huang, Chih-Chieh
論文名稱: 新型增強式三閘極氮化銦鋁/氮化鎵穿隧接面高電子遷移率電晶體
Novel Enhancement-Mode Tri-Gate InAlN/GaN Tunnel-Junction HEMTs
指導教授: 許渭州
Hsu, Wei-Chou
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 61
中文關鍵詞: 增強式三閘極氮化銦鋁/氮化鎵穿隧接面高電子遷移率電晶體超音波噴塗熱烈解法
外文關鍵詞: Enhancement-Mode, Tri-gate, InAlN/GaN, Tunnel-Junction, High Electron Mobility Transistor (HEMT), Ultrasonic Spray Pyrolysis Deposition (USPD)
相關次數: 點閱:128下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出新型增強式三閘極氮化銦鋁/氮化鎵穿隧接面高電子遷移率電晶體。此高電子遷移率電晶體之設計包含源極蕭特基穿隧接面以及三閘極等結構,並且利用三閘極控制之穿隧接面使元件具有增強式之特性。此外,利用其高載子濃度以及高遷移率等特性,解決一般穿隧電晶體導通電流過低之情形。
    本論文之元件皆以超音波噴塗熱裂解法製備高品質氧化鋁作為閘極介電層。為了確認氧化鋁介電層之化學元素成分組成、表面特性以及氧化層厚度,本論文採用X射線光電子能譜儀、原子力顯微鏡以及穿透式電子顯微鏡等方式進行量測與探討。此外,實驗中藉由製備不同閘-源重疊長度之原件,探究不同閘-源極重疊之距離對於元件整體電性表現之影響,實驗結果顯示重疊約為0.25微米之元件具有最佳電性表現。其元件具有以下特性,臨界電壓為 +1.8 V、開關電流比為 109、次臨界擺幅為 73 V/decade、導通電流約為 453 mA/mm、三端崩潰電壓為 560 V取自漏電流為 0.5 μA/mm時,所有特性與參考元件相比,均有相當明顯之提升。
    此外,本論文也探討將上述結構應用在氮化銦鋁/氮化鎵與氮化鋁鎵/氮化鎵兩種磊晶結構上,比較其電性以及元件行為表現,實驗結果顯示時實踐在氮化銦鋁/氮化鎵上之元件具有較佳的輸出特性因為氮化銦鋁/氮化鎵具有較高濃度的二維電子氣,其關閉時之特性也較佳因為氮化銦鋁與氮化鎵晶格較為匹配。此外,本論文所提出之元件在熱穩定性以及低頻雜訊特性方面都具有不錯之表現。上述之特性均顯示本論文所提出之新型增強式三閘極於氮化銦鋁/氮化鎵穿隧接面高電子遷移率電晶體具有相當出色之性能且在高功率之應用具有相當的潛力。

    In this thesis, we demonstrate an enhancement-mode tri-gate InAlN/GaN tunnel-junction high electron mobility transistor (TJ-HEMT). This kind of HEMT includes the designs of source Schottky tunnel-junction and tri-gate structure. It takes advantage of the tri-gate-controlled tunnel-junction to achieve an enhancement-mode device. Moreover, low turn-on current issues of conventional tunnel-junction transistors can be overcome due to the excellent carrier concentration and mobility of HEMTs.
    Aluminium oxide (Al2O3) thin films deposited by using ultrasonic spray pyrolysis deposition (USPD) served as the gate dielectric of the proposed device. In order to investigate the composition of chemical elements, surface characteristics, and thickness of the Al2O3 dielectric layer, some material analyses were implemented such as X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). Then, in order to characterize the influences of the gate overlapping with the Schottky source contact, we fabricated different devices with different overlapping length. The experiment results show the device with the partial overlap about 0.25 μm possessing the best performances. The device reveals a threshold voltage (VTH) of +1.8 V, an on-state/off-state ratio of 109, a subthreshold swing (SS) of 73 mV/decade, an on-state current (Ion) of 453 mA/mm, and a breakdown voltage of 560 V with a leakage current of 0.5 μA/mm. Compared with the reference device, all of the characteristics have been obviously improved.
    The comparisons of InAlN/GaN and AlGaN/GaN epitaxy structures for our tri-gate TJ HEMTs were also investigated. The InAlN/GaN device shows better driving output and off-state performance due to the higher 2DEG density and the InAlN barrier lattice more matched to GaN active channel layer. Moreover, the proposed device shows the good thermal stability and low frequency noise characteristics. These results exhibit that the present novel enhancement-mode tri-Gate InAlN/GaN tunnel-junction HEMT with the excellent performances has great potential for high power device applications.

    Content 摘要 i Abstract iii 誌謝 v Content ix Table Captions xi Figure Captions xii Chapter 1 Introduction 1 1-1 GaN and GaN-based HEMT 1 1-1-1 GaN-based HEMT 2 1-1-2 InAlN/GaN Heterostructure 3 1-2 Tunnel-Junction Structure 3 1-3 Tri-Gate Nanowire Structure 4 1-4 Al2O3 Deposited by USPD 4 1-5 Organization 7 Chapter 2 Device Structure, Fabrication, and Operation Mechanism 9 2-1 Device Structure 9 2-2 Fabrication 9 2-2-1 Pre-Cleaning 9 2-2-2 Mesa Isolation 10 2-2-3 Source Region Recess for Tunnel-Junction 11 2-2-4 Drain Ohmic Contact 12 2-2-5 Source Schottky Contact 13 2-2-6 Gate dielectric Deposition by USPD 14 2-2-7 Gate Electrode Deposition 15 2-3 Operation Mechanism 16 Chapter 3 Results and Discussion 18 3-1 Physical Analyses 18 3-1-1 Hall measurement 18 3-1-2 X-ray Photoelectron Spectroscopy 19 3-1-3 Atomic Force Microscopy 20 3-1-4 Ultraviolet Photoelectron Spectroscopy 21 3-1-5 Transmission Electron Microscopy 21 3-2 Electric Analyses 22 3-2-1 Capacitance-Voltage Characteristics 24 3-2-2 DC Transfer Characteristics 26 3-2-3 Temperature-Dependent DC Transfer Characteristics 27 3-2-4 Low Frequency Noise Characteristics 28 3-2-5 Three-terminal breakdown characteristics 29 Chapter 4 Conclusion and Future work 31 4-1 Conclusion 31 4-2 Future Work 33 References 34 Figures 39

    References
    [1] T. Paul Chow and Ritu Tyagi, "Wide Bandgap Compound Semiconductors for Superior High-Voltage Unipolar Power Devices," IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 41, NO. 8, 1994.
    [2] U. K. Mishra, P. Parikh, and Y.-F. Wu, “AlGaN/GaN HEMTs an overview of device operation and applications,” Proc. IEEE, vol. 90, no. 6, pp. 1022–1031, Jun. 2002.
    [3] J. Kuzmik, “Power electronics on InAlN/(In) GaN: Prospect for a record performance,” IEEE Electron Device Lett., vol. 22, no. 11, pp. 510–513, Nov. 2001.
    [4] Y.-P. Huang, W.-C. Hsu, H.-Y. Liu, and C.-S. Lee, "Enhancement-Mode Tri-Gate Nanowire InAlN/GaN MOSHEMT for Power Applications," IEEE Electron Device Lett, vol. 40, no. 6, 2019.
    [5] J. R. Tucker, C. Wang, and P. S. Carney, “Silicon field-effect transistor based on quantum tunneling,” Appl. Phys. Lett., vol. 65, no. 5, pp. 618– 620, Aug. 1994.
    [6] J. M. Larson and J. P. Snyder, “Overview and status of metal S/D Schottky-barrier MOSFET technology,” IEEE Trans. Electron Devices, vol. 53, no. 5, pp. 1048–1058, May 2006.
    [7] J. Kedzierski, P. Xuan, E. H. Anderson, J. Bokor, T.-J. King, and C. Hu, “Complementary silicide source/drain thin-body MOSFETs for the 20 nm gate length regime,” in IEDM Tech. Dig., Dec. 2000, pp. 57–60.
    [8] M. Nishisaka, S. Matsumoto, and T. Asano, “Schottky source/drain SOI MOSFET with shallow doped extension,” Jpn. J. Appl. Phys., vol. 42, no. 4B, pp. 2009–2013, Apr. 2003.
    [9] Li Yuan, Hongwei Chen, and Kevin J. Chen, "Normally Off AlGaN/GaN Metal–2DEG Tunnel-Junction Field-Effect Transistors," IEEE Electron Device Lett, vol. 32, no. 3, Mar. 2011.
    [10] D. H. Son, Y.-W. Jo, V. Sindhuri, K. S. Im, J. H. Seo, Y. T. Kim, I. M. Kang, S. Cristoloveanu, M. Bawedin, and J.-H. Lee, “Effects of sidewall MOS channel on performance of AlGaN/GaN Fin-FET,” Microelectron. Eng., vol. 147, pp. 155–158, Nov. 2015.
    [11] B. Lu, E. Matioli, and T. Palacios, “Tri-gate normally-off GaN power MISFET,” IEEE Electron Device Lett., vol. 33, no. 3, pp. 360–362, Mar. 2012.
    [12] K. Ohi, J. T. Asubar, K. Nishiguchi, and T. Hashizume, “Current stability in multi-mesa-channel AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 2997–3004, Oct. 2013.
    [13] K. Ohi and T. Hashizume, “Reduction of current collapse in multimesa- channel AlGaN/GaN HEMTs,” Phys. Stat. Sol. C, vol. 9, nos. 3–4, pp. 898–902, 2012.
    [14] S. Liu, Y. Cai, G. Gu, J. Wang, C. Zeng, W. Shi, Z. Feng, H. Qin, Z. Cheng, C. Chen, and B. Zhang, “Enhancement-mode operation of nanochannel array (NCA) AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 33, no. 3, pp. 354–356, Mar. 2012.
    [15] B. Luo, J. W. Johnson, J. Kim, R. M. Mehandru, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton, A. G. Baca, R. D. Briggs, R. J. Shul, C. Monier, and J. Han, “Influence of MgO and Sc2O3 passivation on AlGaN/GaN high-electron-mobility transistors,” Appl. Phys. Lett., Vol. 80, No. 9, 4 Mar. 2002.
    [16] S. Sugiura, S. Kishimoto, T. Mizutani, M. Kuroda, T. Ueda, and T. Tanaka, “Normally-off AlGaN/GaN MOSHFETs with HfO2 gate oxide,” phys. stat. sol. (c) 5, No. 6. 2008.
    [17] Shuichi YAGI, Mitsuaki SHIMIZU, Hajime OKUMURA, Hiromichi OHASHI, Yoshiki YANO1, and Nakao AKUTSU “High Breakdown Voltage AlGaN/GaN Metal–Insulator–Semiconductor High-Electron-Mobility Transistor with TiO2/SiN Gate Insulator,” Jpn. J. Appl. Phys., vol. 46, no. 4B. 2007.
    [18] B.-Y. Chou, H.-Y. Liu, W.-C. Hsu, C.-S. Lee, Y.-S. Wu, W.-C. Sun, S.-Y. Wei, and S.-M. Yu, “Al2O3-Passivated AlGaN/GaN HEMTs by using nonvacuum ultrasonic spray pyrolysis deposition technique,” IEEE Electron Device Lett., vol. 35, no. 9, pp. 903–905, Sep. 2014.
    [19] B.-Y. Chou, W.-C. Hsu, H.-Y. Liu, C.-S. Lee, Y.-S. Wu, W.-C. Sun, S.-Y. Wei, S.-M. Yu, and M.-H. Chiang, “Investigations of AlGaN/GaN MOS-HEMT with Al2O3 deposition by ultrasonic spray pyrolysis method,” Semicond. Sci. Technol., vol. 30, no. 1, Jan. 2015,
    [20] Y. K. Lin, S. Noda, C. C. Huang, H. C. Lo, C. H. Wu, Q. H. Luc, P. C. Chang, and H. T. Hsu, “High-Performance GaN MOSHEMTs Fabricated with ALD Al2O3 Dielectric and NBE Gate Recess Technology for High Frequency Power Applications,” IEEE Electron Device Lett., vol. 38, no. 6, pp. 771-774, 2017.
    [21] H. Y. Wang, Z. T. Li, W. L. Wang, G. Q. Li, and J. H. Luo, “Growth mechanisms of GaN epitaxial films grown on ex situ low-temperature AlN templates on Si substrates by the combination methods of PLD and MOCVD,” J. Alloys Compd., vol. 38, pp. 28-35, 2017.
    [22] K. Uneo, I. H. Inoue, H. Akoh, M. Kawasaki, Y. Tokura, and H. Takagi, “Field-effect transistor on SrTiO3 with sputtered Al2O3 gate insulator,” Appl. Phys. Lett., vol. 83, no.9, pp. 1755-1757, 2003.
    [23] S. Basu, K. S. P, P. W. Sze, and Y. H. Wang,“AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistor with Liquid Phase Deposited Al2O3 as Gate Dielectric,” J. Electrochem. Soc., vol. 157, no. 10, pp. 947-951, 2010.
    [24] H. Y. Liu, W. C. Ou, and W. C. Hsu, “Investigation of Post Oxidation Annealing Effect on H2O2-Grown-Al2O3/AlGaN/GaN MOSHEMTs,” IEEE J Electron Devices Society., vol. 4, no. 5, pp. 358-364, 2016.
    [25] K.-W. Kim, S.-D. Jung, D.-S. Kim, H.-S. Kang, K.-S. Im, J.-J. Oh, J.-B. Ha, J.-K. Shin, and J.-H. Lee, “Effects of TMAH treatment on device performance of normally off Al2O3/GaN MOSFET,” IEEE Electron Device Lett., vol. 32, no. 10, pp. 1376–1378, Oct. 2011.
    [26] E. Hall, “On a New Action of the Magnet on Electric Currents,” American Journal of Mathematics., vol. 2, no. 3, pp. 287–292, 1879.
    [27] T. M. Klein, D. Niu, W. S. Epling, W. Li, D. M. Maher, C. C. Hobbs, R. I. Hegde, I. J. R. Baumvol, and G. N. Parsons, “Evidence of aluminum silicate formation during chemical vapor deposition of amorphous Al 2 O 3 thin films on Si(100),” Appl. Phys. Lett., Vol. 75, No. 25, 20 December 1999.
    [28] G. Binnig, C. F. Quate, and Ch. Gerber, “Atomic Force Mircoscope,” Phys. Rev. Lett., vol. 56, no. 9, pp. 930-933, 1986.
    [29] P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder, and J. C. M. Hwang, “GaN Metal-oxide-semiconductor High-electron-mobility-transistor with Atomic Layer Deposited Al2O3 as Gate Dielectric,” Appl. Phys. Lett., vol. 86, pp. 063501, 2005.
    [30] E. H. Nicollian, J. R. Brews, “MOS (Metal Oxide Semiconductor) Physics and Technology,” New York: Wiley., 1982.
    [31] S. J. Chang, J. G. Hwu, “Comprehensive Study on Negative Capacitance Effect Observed in MOS(n) Capacitors With Ultrathin Gate Oxides,” IEEE Trans. Electron Devices., vol. 58, no. 3, pp. 684-690, 2011.
    [32] F. N. Hooge, T. G. Kleinpenning, and L. K. J. Vandamme, “Experiment studies on1/f noise,” Rep. Prog. Phys., vol. 44, no. 5, pp. 479-532, 1981.
    [33] J. Sikula, M. Levinshtein, “Advanced experimental methods for noise research in nanoscale electronics devices,” Springer Science., 2005.
    [34] J. Ma and E. Matioli, “Slanted Tri-Gates for High-Voltage GaN Power Devices,” IEEE Electron Device Lett, vol. 38, no. 9, Sep 2017.

    無法下載圖示 校內:2024-06-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE