| 研究生: |
寶藏 Bojang, Pa Ousman |
|---|---|
| 論文名稱: |
結合資料前處理與機器學習法建構月雨量預報模式 Linking Data Pre-processing and Machine Learning for Constructing Monthly Rainfall Forecasting Models |
| 指導教授: |
游保杉
Yu, Pao-Shan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 99 |
| 外文關鍵詞: | rainfall forecasting, machine learning, least square support vector regression, random forest, singular spectrum analysis, discrete wavelet transform |
| 相關次數: | 點閱:101 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Accurate and timely monthly rainfall forecasting is essential for reservoir operation and flooding control because it can support water resources planning and management activities. Therefore, construction of monthly rainfall forecasting models in reservoir watersheds is necessary for generating future rainfall amounts as an input to a waterresources-system simulation model to predict water shortage conditions. This research aims to examine the reliability of linking two data pre-processing methods (singular spectrum analysis, SSA and discrete wavelet transform, DWT) with machine learning, least-squares support vector regression (LSSVR), and random forest (RF), for monthly rainfall forecasting in three reservoir watersheds (Shihmen, Deji, and Zengwen Reservoir watersheds) located in northern, middle and southern Taiwan respectively.
Here, data pre-processing (i.e. SSA, DWT) is employed to pre-process the raw input signals to provide data of high quality to LSSVR and RF. The proposed models were alibrated and validated using the watersheds’ observed areal monthly rainfalls which is separated into 70 percent of data for calibration and 30 percent of data for testing.
Model performances were evaluated using two accuracy measures, root mean square error (RMSE) and Nash–Sutcliffe efficiency (NSE). The results show that LSSVR with data pre-processing techniques such as SSA and DWT is the most favorable technique among all the assessed, which makes (DWT-LSSVR and SSA-LSSVR) a promising alternative method for forecasting monthly rainfall. Although the performances of hybrid RF (i.e. SSA-RF and DWT-RF) are less favorable, they are nevertheless good forecasting approaches. Overall, the hybrid models significantly surpass the standard models for the three studied watersheds, which indicates that the proposed models are a prudent modeling approach that could be employed in the current research regions for monthly rainfall forecasting.
Abarghouei, H. B., and Hosseini, S. Z. (2016). "Using Exogenous Variables to Improve Precipitation Predictions of ANNs in Arid and Hyper-Arid Climates." Arabian Journal of Geosciences, 9(15), 663.
Abd Allah, A. (2019). "Time Series Analysis of Nyala Rainfall using ARIMA Method." Journal of Engineering and Computer Science (JECS), 17(1), 5-11.
Adamowski, J. (2007). "Development of a Short-term River Flood Forecasting Method Based on Wavelet Analysis." Chair of Environmental Protection.
Adamowski, J., and Chan, H. F. (2011). "A Wavelet Neural Network Conjunction Model for Groundwater Level Forecasting." Journal of Hydrology, 407(1-4), 28-40.
Adamowski, J., and Sun, K. (2010). "Development of a Coupled Wavelet Transform and Neural Network Method for Flow Forecasting of Non-Perennial Rivers in Semi-Arid Watersheds." Journal of Hydrology, 390(1-2), 85-91.
Adamowski, K., Prokoph, A., and Adamowski, J. (2009). "Development of a New Method of Wavelet Aided Trend Detection and Estimation." Hydrological Processes: An International Journal, 23(18), 2686-2696.
Addison, P. S., Murray, K. B., and Watson, J. N. (2001). "Wavelet Transform Analysis of Open Channel Wake Flows." Journal of Engineering Mechanics, 127(1), 58-70.
Adhikari, K. R., Tan, Y.-C., Lai, J.-S., Chen, Z.-S., and Lin, Y.-J. "Climate Change Impacts and Responses: A Case of Shihmen Reservoir in Taiwan." Proc., Oral Presentation at the 2nd Int’l Conference “Climate Change: Impacts and Responses.” July.
AK, S. J., and PL, V. J. (2002). Least Squares Support Vector Machines, World Scientific.
Alexandrov, T. (2008). "A Method of Trend Extraction Using Singular Spectrum Analysis." arXiv preprint arXiv:0804.3367.
Alexandrov, T., and Golyandina, N. "Automatic Trend Extraction and Forecasting for a Family of Time Series." Proc., Int. Symp. on Forecasting, International Institute of Forecasters, Medford, MA.
Allen, M. R., and Smith, L. A. (1996). "Monte Carlo SSA: Detecting Irregular Oscillations in the Presence of Colored Noise." Journal of Climate, 9(12), 3373-3404.
Allen, M. R., and Smith, L. A. (1997). "Optimal Filtering in Singular Spectrum Analysis." Physics Letters A, 234(6), 419-428.
Altunkaynak, A., and Nigussie, T. A. (2015). "Prediction of Daily rainfall by a Hybrid Wavelet-Season-Neuro Technique." Journal of Hydrology, 529, 287-301.
Altunkaynak, A., and Ozger, M. (2016). "Comparison of Discrete and Continuous Wavelet–multilayer Perceptron Methods for Daily Precipitation Prediction." Journal of Hydrologic Engineering, 21(7), 04016014.
Amit, Y., and Geman, D. (1997). "Shape Quantization and Recognition with Randomized Trees." Neural Computation, 9(7), 1545-1588.
Asefa, T., Kemblowski, M., McKee, M., and Khalil, A. (2006). "Multi-time Scale Stream Flow Predictions: The Support Vector Machines Approach." Journal of Hydrology, 318(1-4), 7-16.
Benaouda, D., Murtagh, F., Starck, J.-L., and Renaud, O. (2006). "Wavelet-based Nonlinear Multiscale Decomposition Model for Electricity Load Forecasting." Neurocomputing, 70(1-3), 139-154.
Bhagwat, P. P., and Maity, R. (2012). "Multistep-Ahead River Flow Prediction using LS-SVR at Daily Scale." Journal of Water Resource and Protection, 4(7), 528.
Bhakar, S., Singh, R. V., Chhajed, N., and Bansal, A. K. (2006). "Stochastic Modeling of Monthly Rainfall at Kota Region." ARPN Journal of Engineering and Applied Sciences, 1(3), 36-44.
Bonizzi, P., Karel, J. M., Meste, O., and Peeters, R. L. (2014). "Singular Spectrum Decomposition: A New Method for Time Series Decomposition." Advances in Adaptive Data Analysis, 6(04), 1450011.
Bray, M., and Han, D. (2004). "Identification of Support Vector Machines for Runoff Modelling." Journal of Hydroinformatics, 6(4), 265-280.
Breiman, L. "Manual–Setting Up, using, and Understanding Random Forests, v4. 2003." URL ftp://ftp. stat. berkeley. edu/pub/users/breiman/Using_random_forests_v4. 0. pdf, 11.
Breiman, L. (2001). "Random Forests." Machine Learning, 45(1), 5-32.
Breiman, L. (2002). "Manual on Setting Up, Using, and Understanding Random Forests v3. 1." Statistics Department University of California Berkeley, CA, USA, 1, 58.
Broomhead, D. S., and King, G. P. (1986). "Extracting Qualitative Dynamics from Experimental Data." Physica D: Nonlinear Phenomena, 20(2-3), 217-236.
Bruce, A., Donoho, D., and Gao, H.-Y. (1996). "Wavelet Analysis [for Signal Processing]." IEEE spectrum, 33(10), 26-35.
Bui, D. T., Tuan, T. A., Klempe, H., Pradhan, B., and Revhaug, I. (2016). "Spatial Prediction Models for Shallow Landslide Hazards: a Comparative Assessment of the Efficacy of Support Vector Machines, Artificial Neural Networks, Kernel Logistic Regression, and Logistic Model Tree." Landslides, 13(2), 361-378.
Byun, H., and Lee, S.-W. "Applications of Support Vector Machines for Pattern Recognition: A Survey." Proc., International Workshop on Support Vector Machines, Springer, 213-236.
Cannas, B., Fanni, A., Sias, G., Tronci, S., and Zedda, M. "River Flow Forecasting using Neural Networks and Wavelet Analysis." Proc., Geophys. Res. Abstr, 08651.
Cao, L.-J., and Tay, F. E. H. (2003). "Support Vector Machine with Adaptive Parameters in Financial Time Series Forecasting." IEEE Transactions on Neural Networks, 14(6), 1506-1518.
Carlson, R. F., MacCormick, A., and Watts, D. G. (1970). "Application of Linear Random Models to Four Annual Streamflow Series." Water Resources Research, 6(4), 1070-1078.
Catani, F., Lagomarsino, D., Segoni, S., and Tofani, V. (2013). "Landslide Susceptibility Estimation by Random Forests Technique: Sensitivity and Scaling Issues." Natural Hazards and Earth System Sciences, 13(11), 2815.
Chan, J. C.-W., and Paelinckx, D. (2008). "Evaluation of Random Forest and Adaboost Tree-Based Ensemble Classification and Spectral Band Selection for Ecotope Mapping using Airborne Hyperspectral Imagery." Remote Sensing of Environment, 112(6), 2999-3011.
Chau, K., and Wu, C. (2010). "A Hybrid Model Coupled with Singular Spectrum Analysis for Daily Rainfall Prediction." Journal of Hydroinformatics, 12(4), 458-473.
Chen, J., Li, M., and Wang, W. (2012). "Statistical Uncertainty Estimation using Random Forests and its Application to Drought Forecast." Mathematical Problems in Engineering, 2012.
Chou, C.-m. (2011). "A threshold Based Wavelet Denoising Method for Hydrological Data Modelling." Water Resources Management, 25(7), 1809-1830.
Christopoulou, E. B., Skodras, A. N., and Georgakilas, A. A. "The ‘‘Trous’’Wavelet Transform Versus Classical Methods for the Improvement of Solar Images." Proc., Proceedings of 14th International Conference on Digital Signal Processing, 885-888.
Cimen, M. (2008). "Estimation of Daily Suspended Sediments Using Support Vector Machines." Hydrological Sciences Journal, 53(3), 656-666.
D'Astous, F., and Hipel, K. W. (1979). "Analyzing Environmental Time Series." Journal of the Environmental Engineering Division, 105(5), 979-992.
Danilov, D., and Zhigljavsky, A. (1997). "Principal Components of Time Series: The ‘Caterpillar’Method." St. Petersburg: University of St. Petersburg, 1-307.
Debnath, L. "Wavelet transforms and their applications. 2002." Birkäuser, Boston.
Delleur, J. W., and Kavvas, M. L. (1978). "Stochastic Models for Monthly Rainfall Forecasting and Synthetic Generation." Journal of Applied Meteorology, 17(10), 1528-1536.
Dibike, Y. B., Velickov, S., Solomatine, D., and Abbott, M. B. (2001). "Model Induction with Support Vector Machines: Introduction and Applications." Journal of Computing in Civil Engineering, 15(3), 208-216.
Elshorbagy, A., Simonovic, S., and Panu, U. (2002). "Noise Reduction in Chaotic Hydrologic Time Series: Facts and Doubts." Journal of Hydrology, 256(3-4), 147-165.
Elsner, J. B., & Tsonis, A. A. (1996). "Singular Spectrum Analysis: A New Tool in Time Series
analysis. Plenum.".
Firth, L., Hazelton, M. L., and Campbell, E. P. (2005). "Predicting the Onset of Australian Winter Rainfall by Nonlinear Classification." Journal of climate, 18(6), 772-781.
Fraedrich, K. (1986). "Estimating the Dimensions of Weather and Climate Attractors." Journal of the Atmospheric Sciences, 43(5), 419-432.
Frías, M. D., Iturbide, M., Manzanas, R., Bedia, J., Fernández, J., Herrera, S., Cofiño, A. S., and Gutiérrez, J. M. (2018). "An R Package to Visualize and Communicate Uncertainty in Seasonal Climate Prediction." Environmental Modelling & Software, 99, 101-110.
Gámiz‐Fortis, S., Pozo‐Vázquez, D., Esteban‐Parra, M., and Castro‐Díez, Y. (2002). "Spectral Characteristics and Predictability of the NAO Assessed Through Singular Spectral Analysis." Journal of Geophysical Research: Atmospheres, 107(D23), ACL 11-11-ACL 11-15.
Gantmacher, F. (1959). "The Theory of Matrices Chelsea Publishing Company." New York, 1, 125-131.
Garbrecht, J., Zhang, X., Schneider, J., and Steiner, J. (2010). "Utility of Seasonal Climate Forecasts in Management of Winter-Wheat Grazing." Applied Engineering in Agriculture, 26(5), 855-866.
Ghiasi, M. M., Shahdi, A., Barati, P., and Arabloo, M. (2014). "Robust Modeling Approach for Estimation of Compressibility Factor in Retrograde Gas Condensate Systems." Industrial & Engineering Chemistry Research, 53(32), 12872-12887.
Ghil, M., Allen, M., Dettinger, M., Ide, K., Kondrashov, D., Mann, M., Robertson, A. W., Saunders, A., Tian, Y., and Varadi, F. (2002). "Advanced Spectral Methods for Climatic Time Series." Reviews of Geophysics, 40(1), 3-1-3-41.
Ghodsi, M., Hassani, H., Sanei, S., and Hicks, Y. (2009). "The use of Noise Information for Detection of Temporomandibular Disorder." Biomedical Signal Processing and Control, 4(2), 79-85.
Golyandina, N., Korobeynikov, A., and Zhigljavsky, A. (2018). Singular Spectrum Analysis with R, Springer.
Golyandina, N., Nekrutkin, V., and Zhigljavsky, A. A. (2001). Analysis of Time Series Structure: SSA and Related Techniques, CRC press.
Golyandina, N., and Zhigljavsky, A. (2013). Singular Spectrum Analysis for Time Series, Springer Science & Business Media.
Graham, A., and Mishra, E. P. (2017). "Time Series Analysis Model to Forecast Rainfall for Allahabad Region." Journal of Pharmacognosy and Phytochemistry, 6(5), 1418-1421.
Grinsted, A., Moore, J. C., and Jevrejeva, S. (2004). "Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series." Nonlinear Processes in Geophysics, 11(5/6), 561-566.
Grossmann, A., and Morlet, J. (1984). "Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape." SIAM Journal on Mathematical Analysis, 15(4), 723-736.
Gryllias, K. C., and Antoniadis, I. A. (2012). "A Support Vector Machine Approach Based on Physical Model Training for Rolling Element Bearing Fault Detection in Industrial Environments." Engineering Applications of Artificial Intelligence, 25(2), 326-344.
Guo, G., Li, S. Z., and Chan, K. L. (2001). "Support Vector Machines for Face Recognition." Image and Vision computing, 19(9-10), 631-638.
Hassani, H. (2007). "Singular spectrum analysis: methodology and comparison."
Hassani, H. (2010). "Singular Spectrum Analysis Based on the Minimum Variance Estimator." Nonlinear Analysis: Real World Applications, 11(3), 2065-2077.
Hassani, H., and Thomakos, D. (2010). "A Review on Singular Spectrum Analysis for Economic and Financial Time Series." Statistics and its Interface, 3(3), 377-397.
Hassani, H., Webster, A., Silva, E. S., and Heravi, S. (2015). "Forecasting US Tourist Arrivals using Optimal Singular Spectrum Analysis." Tourism Management, 46, 322-335.
Hassani, H., and Zhigljavsky, A. (2009). "Singular Spectrum Analysis: Methodology and Application to Economics Data." Journal of Systems Science and Complexity, 22(3), 372-394.
Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Science & Business Media.
Haytham, A., Salem, G., and Gabor, M. "Urban Water Flow and Water Level Prediction Based on Deep Learning." Proc., Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD).
Hodrick, R. J., and Prescott, E. C. (1997). "Postwar US Business Cycles: An Empirical Investigation." Journal of Money, credit, and Banking, 1-16.
Hussain, R. (2016). "C++ wavelet libraries." <http://wavelet2d.sourceforge.net/>. (25- Jan- 2016).
Ismail, S., and Shabri, A. (2014). "Stream Flow Forecasting using Principal Component Analysis and Least Square Support Vector Machine." J. Appl. Sci. Agric, 9, 170-180.
Ismail, S., Shabri, A., and Samsudin, R. (2011). "A Hybrid Model of Self-Organizing Maps (SOM) and Least Square Support Vector Machine (LSSVM) for Time-Series Forecasting." Expert Systems with Applications, 38(8), 10574-10578.
Jawerth, B., and Sweldens, W. (1994). "An Overview of Wavelet Based Multiresolution Analyses." SIAM Review, 36(3), 377-412.
Kane, M. J., Price, N., Scotch, M., and Rabinowitz, P. (2014). "Comparison of ARIMA and Random Forest Time Series Models for Prediction of Avian Influenza H5N1 Outbreaks." BMC Bioinformatics, 15(1), 276.
Kasiri, K., Kazemi, K., Dehghani, M. J., and Helfroush, M. S. "Atlas-Based Segmentation of Brain MR Images using Least Square Support Vector Machines." Proc., 2010 2nd International Conference on Image Processing Theory, Tools and Applications, IEEE, 306-310.
Kim, T.-W., and Valdés, J. B. (2003). "Nonlinear Model for Drought Forecasting Based On a Conjunction of Wavelet Transforms and Neural Networks." Journal of Hydrologic Engineering, 8(6), 319-328.
Kim, T. W., & Valdés, J. B. (2003). "Nonlinear Model for Drought Forecasting Based on a Conjunction of Wavelet Transforms and Neural Networks." Journal of Hydrologic Engineering, 319-328.
Kisi, O. (2015). "Pan Evaporation Modeling using Least Square Support Vector Machine, Multivariate Adaptive Regression Splines and M5 Model Tree." Journal of Hydrology, 528, 312-320.
Kisi, O., and Shiri, J. (2011). "Precipitation Forecasting using Wavelet-Genetic Programming and Wavelet-Neuro-Fuzzy Conjunction Models." Water Resources Management, 25(13), 3135-3152.
Korobeynikov, A., Shlemov, A., Usevich, K., and Golyandina, N. (2016). "Rssa: A Collection of Methods for Singular Spectrum Analysis, 2015." R Package Version 0.13.
Kuhn, M., and Johnson, K. (2013). "A Short Tour of the Predictive Modeling Process." Applied Predictive Modeling, Springer, 19-26.
Kumar, M., and Thenmozhi, M. "Forecasting Stock Index Movement: A Comparison of Support Vector Machines and Random Forest." Proc., Indian institute of Capital Markets 9th Capital Markets Conference Paper.
Kumar, P., and Foufoula-Georgiou, E. (1994). "Wavelet Analysis in Geophysics: An Introduction." Wavelets in Geophysics, 4, 1-43.
Labat, D., Ababou, R., and Mangin, A. (2000). "Rainfall–runoff Relations for Karstic Springs. Part II: Continuous Wavelet and Discrete Orthogonal Multiresolution Analyses." Journal of Hydrology, 238(3-4), 149-178.
Liaw, A., and Wiener, M. (2002). "Classification and Regression by Random Forest." R news, 2(3), 18-22.
Lin, J.-Y., Cheng, C.-T., and Chau, K.-W. (2006). "Using Support Vector Machines for Long-term Discharge Prediction." Hydrological Sciences Journal, 51(4), 599-612.
Liong, S. Y., and Sivapragasam, C. (2002). "Flood Stage Forecasting with support vector machines 1." JAWRA Journal of the American Water Resources Association, 38(1), 173-186.
Lisi, F., Nicolis, O., and Sandri, M. (1995). "Combining Singular-Spectrum Analysis and Neural Networks for Time Series Forecasting." Neural Processing Letters, 2(4), 6-10.
Mahmoodi, N. M., Arabloo, M., and Abdi, J. (2014). "Laccase Immobilized Manganese Ferrite Nanoparticle: Synthesis and LSSVM Intelligent Modeling of Decolorization." Water Research, 67, 216-226.
Maity, R., Bhagwat, P. P., and Bhatnagar, A. (2010). "Potential of Support Vector Regression for Prediction of Monthly Streamflow using Endogenous Property." Hydrological Processes: An International Journal, 24(7), 917-923.
Mallat, S. G. (1989). "A Theory for Multiresolution Signal Decomposition: The Wavelet Representation." IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674-693.
Marques, C., Ferreira, J., Rocha, A., Castanheira, J., Melo-Gonçalves, P., Vaz, N., and Dias, J. (2006). "Singular Spectrum Analysis and Forecasting of Hydrological Time Series." Physics and Chemistry of the Earth, Parts A/B/C, 31(18), 1172-1179.
Mehr, A. D., Nourani, V., Khosrowshahi, V. K., and Ghorbani, M. (2019). "A hybrid Support Vector Regression–Firefly Model for Monthly Rainfall Forecasting." International Journal of Environmental Science and Technology, 16(1), 335-346.
Men, B., Long, R., Li, Y., Liu, H., Tian, W., and Wu, Z. (2017). "Combined Forecasting of Rainfall Based on Fuzzy Clustering and Cross Entropy." Entropy, 19(12), 694.
Meyer, D., Leisch, F., and Hornik, K. (2003). "The Support Vector Machine Under Test." Neurocomputing, 55(1-2), 169-186.
Meyer, Y. (1992). Wavelets and Operators, Cambridge University Press.
Micheletti, N., Foresti, L., Robert, S., Leuenberger, M., Pedrazzini, A., Jaboyedoff, M., and Kanevski, M. (2014). "Machine Learning Feature Selection Methods for Landslide Susceptibility Mapping." Mathematical Geosciences, 46(1), 33-57.
Mislan, M., Haviluddin, H., Hardwinarto, S., Sumaryono, S., and Aipassa, M. "Rainfall Monthly Prediction Based on Artificial Neural Network: A Case Study in Tenggarong Station, East Kalimantan-Indonesia." The International Conference on Computer Science and Computational ….
Monira, S. S., Faisal, Z. M., and Hirose, H. "Comparison of Artificially Intelligent Methods in Short Term Rainfall Forecast." Proc., 2010 13th International Conference on Computer and Information Technology (ICCIT), IEEE, 39-44.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L. (2007). "Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations." Transactions of the ASABE, 50(3), 885-900.
Naik, G. (2020). Biomedical Signal Processing, Springer.
Najah, A., El-Shafie, A., Karim, O. A., Jaafar, O., and El-Shafie, A. H. (2011). "An Application of Different Artificial Intelligences Techniques for Water Quality Prediction." Int J Phys Sci, 6(22), 5298-5308.
Nason, G. P., and Silverman, B. W. (1994). "The Discrete Wavelet Transform in S." Journal of Computational and Graphical Statistics, 3(2), 163-191.
Nayak, D. R., Mahapatra, A., and Mishra, P. (2013). "A Survey on Rainfall Prediction using Artificial Neural Network." International Journal of Computer Applications, 72(16).
Ngui, W. K., Leong, M. S., Hee, L. M., and Abdelrhman, A. M. "Wavelet Analysis: Mother Wavelet Selection Methods." Proc., Applied Mechanics and Materials, Trans Tech Publ, 953-958.
Nguyen, T.-T. "An L1-Regression Random Forests Method for Forecasting of Hoa Binh Reservoir's Incoming Flow." Proc., 2015 Seventh International Conference on Knowledge and Systems Engineering (KSE), IEEE, 360-364.
Nguyen, T.-T., Huu, Q. N., and Li, M. J. "Forecasting Time Series Water Levels on Mekong River using Machine Learning Models." Proc., 2015 Seventh International Conference on Knowledge and Systems Engineering (KSE), IEEE, 292-297.
Niwas, S. I., Palanisamy, P., Zhang, W., Isa, N. A. M., and Chibbar, R. "Log-Gabor Wavelets Based Breast Carcinoma Classification using Least Square Support Vector Machine." Proc., 2011 IEEE International Conference on Imaging Systems and Techniques, IEEE, 219-223.
Nourani, V., Alami, M. T., and Aminfar, M. H. (2009). "A Combined Neural-Wavelet Model for Prediction of Ligvanchai Watershed Precipitation." Engineering Applications of Artificial Intelligence, 22(3), 466-472.
Nourani, V., Davanlou Tajbakhsh, A., Molajou, A., and Gokcekus, H. (2019). "Hybrid Wavelet-M5 Model Tree for Rainfall-Runoff Modeling." Journal of Hydrologic Engineering, 24(5), 04019012.
Nourani, V., Komasi, M., and Mano, A. (2009). "A multivariate ANN-wavelet Approach for Rainfall–runoff Modeling." Water Resources Management, 23(14), 2877.
Okkan, U. (2012). "Performance of Least Squares Support Vector Machine for Monthly Reservoir Inflow Prediction." Fresenius Environmental Bulletin, 21(3), 611-620.
Oropeza, V. (2010). "The Singular Spectrum Analysis Method and its Application to Seismic Data Denoising and Reconstruction."
Oshiro, T. M., Perez, P. S., and Baranauskas, J. A. "How Many Trees in a Random Forest?" Proc., International Workshop on Machine Learning and Data Mining in Pattern Recognition, Springer, 154-168.
Pandhiani, S. M., and Shabri, A. B. (2013). "Time Series Forecasting using Wavelet-Least Squares Support Vector Machines and Wavelet Regression Models for Monthly Stream Flow Data." Open Journal of Statistics, 3(03), 183.
Papacharalampous, G., Tyralis, H., and Koutsoyiannis, D. (2017). "Forecasting of Geophysical Processes Using Stochastic and Machine Learning Algorithms." European Water, 59, 161-168.
Papacharalampous, G., Tyralis, H., and Koutsoyiannis, D. (2018). "Univariate Time Series Forecasting of Temperature and Precipitation with a Focus on Machine Learning Algorithms: A multiple-case Study from Greece." Water Resources Management, 32(15), 5207-5239.
Partal, T., and Cigizoglu, H. K. (2009). "Prediction of Daily Precipitation using Wavelet-neural Networks." Hydrological Sciences Journal, 54(2), 234-246.
Partal, T., and Kişi, Ö. (2007). "Wavelet and Neuro-fuzzy Conjunction Model for Precipitation Forecasting." Journal of Hydrology, 342(1-2), 199-212.
Pham, Q. B., Yang, T.-C., Kuo, C.-M., Tseng, H.-W., and Yu, P.-S. (2019). "Combing Random Forest and Least Square Support Vector Regression for Improving Extreme Rainfall Downscaling." Water, 11(3), 451.
Pingale, S. M., Khare, D., Jat, M. K., and Adamowski, J. (2014). "Spatial and Temporal Trends of Mean and Extreme Rainfall and Temperature for the 33 Urban Centers of the Arid and Semi-arid State of Rajasthan, India." Atmospheric Research, 138, 73-90.
Pour, S. H., Shahid, S., and Chung, E.-S. (2016). "A Hybrid Model for Statistical Downscaling of Daily Rainfall." Procedia Engineering, 154, 1424-1430.
Prasad, R., Deo, R. C., Li, Y., and Maraseni, T. (2017). "Input Selection and Performance Optimization of ANN-Based Streamflow Forecasts in the Drought-Prone Murray Darling Basin Region using IIS and MODWT Algorithm." Atmospheric research, 197, 42-63.
Probst, P., and Boulesteix, A.-L. (2017). "To Tune or not to Tune the Number of Trees in Random Forest." The Journal of Machine Learning Research, 18(1), 6673-6690.
Rahmani, D. (2017). "Bayesian Singular Spectrum Analysis with State Dependent Models." Bournemouth University.
Rajaee, T. (2011). "Wavelet and ANN Combination Model for Prediction of Daily Suspended Sediment Load in Rivers." Science of the Total Environment, 409(15), 2917-2928.
Ramana, R. V., Krishna, B., Kumar, S., and Pandey, N. (2013). "Monthly Rainfall Prediction using Wavelet Neural Network Analysis." Water Resources Management, 27(10), 3697-3711.
Rao, K. D. (2005). "Multi-criteria Spatial Decision Analysis for Forecasting Urban Water Requirements: A Case Study of Dehradun city, India." Landscape and Urban Planning, 71(2-4), 163-174.
Rodrigues, P. C., and De Carvalho, M. (2013). "Spectral Modeling of Time Series with Missing Data." Applied Mathematical Modelling, 37(7), 4676-4684.
Samui, P., Mandla, V. R., Krishna, A., and Teja, T. (2011). "Prediction of Rainfall using Support Vector Machine and Relevance Vector Machine." Earth Science India, 4.
Sanei, S., and Hassani, H. (2015). Singular Spectrum Analysis of Biomedical Signals, CRC Press.
Sang, Y.-F. (2012). "A Practical Guide to Discrete Wavelet Decomposition of Hydrologic Time Series." Water Resources Management, 26(11), 3345-3365.
Seneviratna, D., and Rathnayaka, R. (2017). "Rainfall Data Forecasting by SARIMA and BPNN Model." IOSR J. Math, 6(3), 57-63.
Shahbazi, A., Zahraie, B., Sedghi, H., Manshouri, M., and Nasseri, M. (2011). "Seasonal Meteorological Drought Prediction using Support Vector Machine." World Applied Sciences Journal, 13(6), 1387-1397.
Shoaib, M., Shamseldin, A. Y., and Melville, B. W. (2014). "Comparative Study of Different Wavelet Based Neural Network Models for Rainfall–runoff Modeling." Journal of Hydrology, 515, 47-58.
Sivapragasam, C., Liong, S.-Y., and Pasha, M. (2001). "Rainfall and Runoff Forecasting with SSA–SVM Approach." Journal of Hydroinformatics, 3(3), 141-152.
Solgi, A., Nourani, V., and Pourhaghi, A. (2014). "Forecasting Daily Precipitation using Hybrid Model of Wavelet-artificial Neural Network and Comparison with Adaptive Neurofuzzy Inference System (Case Study: Verayneh Station, Nahavand)." Advances in Civil Engineering, 2014.
Stumpf, A., and Kerle, N. (2011). "Object-Oriented Mapping of Landslides using Random Forests." Remote Sensing of Environment, 115(10), 2564-2577.
Sumi, S. M., Zaman, M. F., and Hirose, H. (2012). "A Rainfall Forecasting Method using Machine Learning Models and its Application to the Fukuoka City Case." International Journal of Applied Mathematics and Computer Science, 22(4), 841-854.
Suykens, J. A., De Brabanter, J., Lukas, L., and Vandewalle, J. (2002). "Weighted Least Squares Support Vector Machines: Robustness and Sparse Approximation." Neurocomputing, 48(1-4), 85-105.
Suykens, J. A., and Vandewalle, J. (1999). "Least Squares Support Vector Machine Classifiers." Neural Processing Letters, 9(3), 293-300.
Tadesse, K. B., and Dinka, M. O. (2017). "Application of SARIMA Model to Forecasting Monthly Flows in Waterval River, South Africa." Journal of Water and Land Development, 35(1), 229-236.
Takens, F. (1981). "Detecting Strange Attractors in Turbulence." Dynamical Systems and Turbulence, Warwick 1980, Springer, 366-381.
Tennant, W. J., and Hewitson, B. C. (2002). "Intra‐Seasonal Rainfall Characteristics and Their Importance to the Seasonal Prediction Problem." International Journal of Climatology: A Journal of the Royal Meteorological Society, 22(9), 1033-1048.
Thomakos, D. D. (2008). "Optimal Linear Filtering, Smoothing and Trend Extraction for Processes with Unit Roots and Cointegration." Smoothing and Trend Extraction for Processes with Unit Roots and Cointegration (June 9, 2008).
Torrence, C., and Webster, P. J. (1999). "Interdecadal Changes in the ENSO–Monsoon system." Journal of climate, 12(8), 2679-2690.
Trickett, S. R. (2003). "F-xy Eigenimage Noise Suppression." Geophysics, 68(2), 751-759.
Twarakavi, N. K., Misra, D., and Bandopadhyay, S. (2006). "Prediction of Arsenic in Bedrock Derived Stream Sediments at a Gold Mine Site under Conditions of Sparse Data." Natural Resources Research, 15(1), 15-26.
Unnikrishnan, P., and Jothiprakash, V. (2015). "Extraction of Nonlinear Rainfall Trends using Singular Spectrum Analysis." Journal of Hydrologic Engineering, 20(12), 05015007.
Unnikrishnan, P., and Jothiprakash, V. (2018). "Daily Rainfall Forecasting for one year in a Single Run using Singular Spectrum Analysis." Journal of Hydrology, 561, 609-621.
Unnikrishnan, P., and Jothiprakash, V. (2018). "Data-driven Multi-time-step Ahead Daily Rainfall Forecasting using Singular Spectrum Analysis-based Data Pre-processing." Journal of Hydroinformatics, 20(3), 645-667.
Vatuard, R., Yiou, P., and Ghil, M. (1992). "Singular Spectrum Analysis: A Toolkit for Short, Noisy and Chaotic Series." Physica D, 58(95), 126.
Vautard, R., and Ghil, M. (1989). "Singular Spectrum Analysis in Nonlinear Dynamics, with Applications to Paleoclimatic Time Series." Physica. D, Nonlinear Phenomena, 35(3), 395-424.
Vautard, R., and Ghil, M. (1989). "Singular Spectrum Analysis in Nonlinear Dynamics, with Applications to Paleoclimatic Time Series." Physica D-Nonlinear Phenomena, 35, 395-424.
Vautard, R., Yiou, P., and Ghil, M. (1992). "Singular Spectrum Analysis: A Toolkit for Short, Noisy Chaotic Signals." Physica D: Nonlinear Phenomena, 58(1-4), 95-126.
Verikas, A., Gelzinis, A., and Bacauskiene, M. (2011). "Mining Data with Random Forests: A Survey and Results of New Tests." Pattern Recognition, 44(2), 330-349.
Vincenzi, S., Zucchetta, M., Franzoi, P., Pellizzato, M., Pranovi, F., De Leo, G. A., and Torricelli, P. (2011). "Application of a Random Forest Algorithm to Predict Spatial Distribution of the Potential Yield of Ruditapes Philippinarum in the Venice lagoon, Italy." Ecological Modelling, 222(8), 1471-1478.
Vitanov, N. K., Sakai, K., and Dimitrova, Z. I. (2008). "SSA, PCA, TDPSC, ACFA: Useful Combination of Methods for Analysis of Short and Nonstationary Time Series." Chaos, Solitons & Fractals, 37(1), 187-202.
Vorlowa, A. (2003). "Wavelet Exploratory Analysis of the FTSE ALL SHARE index." Citeseer.
Wang, J., Li, L., Niu, D., and Tan, Z. (2012). "An Annual Load Forecasting Model Based on Support Vector Regression with Differential Evolution Algorithm." Applied Energy, 94, 65-70.
Wang, W., and Ding, J. (2003). "Wavelet Network Model and its Application to the Prediction of Hydrology." Nature and Science, 1(1), 67-71.
Wang, X.-L., and Wang, M.-W. (2010). "Short-Term Wind Speed Forecasting Based on Wavelet Decomposition and Least Square Support Vector Machine [J]." Power System Technology, 1.
Wang, Z., Lai, C., Chen, X., Yang, B., Zhao, S., and Bai, X. (2015). "Flood Hazard Risk Assessment Model Based on Random Forest." Journal of Hydrology, 527, 1130-1141.
Weare, B. C., and Nasstrom, J. S. (1982). "Examples of Extended Empirical Orthogonal Function Analyses." Monthly Weather Review, 110(6), 481-485.
Wojtaszczyk, P. (1997). A Mathematical Introduction to Wavelets, Cambridge University Press.
Wu, C., Chau, K., and Fan, C. (2010). "Prediction of Rainfall Time Series using Modular Artificial Neural Networks Coupled with Data pre-processing Techniques." Journal of Hydrology, 389(1-2), 146-167.
Wu, C., Chau, K., and Li, Y. (2009). "Methods to Improve Neural Network Performance in Daily Flows Prediction." Journal of Hydrology, 372(1-4), 80-93.
Wu, J., Liu, M., and Jin, L. (2010). "A Hybrid Support Vector Regression Approach for Rainfall Forecasting using Particle Swarm Optimization and Projection Pursuit Technology." International Journal of Computational Intelligence and Applications, 9(02), 87-104.
Yang, M., Sang, Y.-F., Liu, C., and Wang, Z. (2016). "Discussion on the Choice of Decomposition level for Wavelet Based Hydrological Time Series Modeling." Water, 8(5), 197.
Yiou, P., Sornette, D., and Ghil, M. (2000). "Data-adaptive wavelets and multi-scale Singular-spectrum Analysis." Physica D: Nonlinear Phenomena, 142(3-4), 254-290.
Yu, P.-S., Yang, T.-C., Chen, S.-Y., Kuo, C.-M., and Tseng, H.-W. (2017). "Comparison of Random Forests and Support Vector Machine for Real-time Radar-derived Rainfall Forecasting." Journal of Hydrology, 552, 92-104.
Yu, P.-S., Yang, T.-C., and Kuo, C.-C. (2006). "Evaluating Long-term Trends in Annual and Aeasonal Precipitation in Taiwan." Water Resources Management, 20(6), 1007-1023.
Zhang, Q., Wang, B.-D., He, B., Peng, Y., and Ren, M.-L. (2011). "Singular Spectrum Analysis and ARIMA Hybrid Model for Annual Runoff Forecasting." Water Resources Management, 25(11), 2683-2703.
Zhang, X., Qiu, D., and Chen, F. (2015). "Support Vector Machine with Parameter Optimization by a Novel Hybrid Method and its Application to Fault Diagnosis." Neurocomputing, 149, 641-651.
Zhou, H.-c., Peng, Y., and Liang, G.-h. (2008). "The Research of Monthly Discharge Predictor-corrector Model based on Wavelet Decomposition." Water Resources Management, 22(2), 217-227.
Zubaidi, S. L., Dooley, J., Alkhaddar, R. M., Abdellatif, M., Al-Bugharbee, H., and Ortega-Martorell, S. (2018). "A Novel Approach for Predicting Monthly Water Demand by Combining Singular Spectrum Analysis with Neural Networks." Journal of Hydrology, 561, 136-145.