簡易檢索 / 詳目顯示

研究生: 崔育維
Tsui, Yu-Wei
論文名稱: 添加乙胺碘以提升鈣鈦礦太陽能電池特性之研究
Improvement on Perovskite Solar Cell with the Additives of Ethylammonium Iodide
指導教授: 許渭州
Hsu, Wei-Chou
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 50
中文關鍵詞: 鈣鈦礦太陽能電池乙胺碘
外文關鍵詞: Perovskite solar cell, ethylammonium iodide
相關次數: 點閱:75下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以三碘化甲胺鉛(CH3NH3PbI3)作為鈣鈦礦材料,主要探討在三鹵化甲胺鉛中添加微量的乙胺碘(ethylammonium iodide),製作出平面異質接面的鈣鈦礦太陽能電池,其光電轉換效率由10.03% 提升至10.61%。為了瞭解乙胺碘對於鈣鈦礦主動層的影響,本研究利用X光繞射、高解析掃描式電子顯微鏡、光吸收頻譜、外部量子效率、載子傳輸能力等材料分析,更進一步探討乙胺碘在鈣鈦礦主動層的變化。經由實驗結果發現,添加適量的乙胺碘可以提升鈣鈦礦的結晶度,使鈣鈦礦晶格形成一混相的狀態,同時晶形大小變大,孔洞變少,改善了鈣鈦礦太陽能電池的開路電壓及填充因子,提升鈣鈦礦太陽能電池的光電轉換效率。然而,我們亦將適量乙胺碘添加於甲脒碘(CH3(NH2)2PbI3)中,其光電轉換效率由9.26% 大幅提升至11.48%。從本研究的結果顯示,乙胺碘對於鈣鈦礦主動層之改善確實有著關鍵性的作用。

    In this research, we utilized the methylammonium lead iodide (CH3NH3PbI3) as the material of the perovskite with a small addition of ethylammonium iodide (CH3CH2NH3I) to produce planar heterojunction perovskite solar cells. The power conversion efficiency of MAPbI3 device with the volume ratio of 2.5% of ethylammonium iodide has increased from 10.03% up to 10.61%. We have observed that the perovskite had higher crystallinity with larger grain sizes and less pin-holes in a hybrid phase of the structure, improving the open-circuit voltage, the fill factor and the power conversion efficiency. In addition, we have demonstrated the same method on the formamidinium iodide (CH3(NH2)2PbI3) perovskite solar cell with much improvement of power conversion efficiency from 9.26% up to 11.48%. Overall, further discussions have been investigated on the understanding of the additives of ethylammonium iodide.

    摘要 i Abstract ii 誌謝 iv Content v Table Captions vii Figure Captions viii Chapter 1 Introduction 1 1-1 Background 1 1-2 Motivation 4 1-3 Organization 6 Chapter 2 Operation Principle 7 2-1 Solar Spectrum 7 2-2 Mechanism of Photovoltaic Cell 8 2-3 Analysis of Photovoltaic Cell Characteristics 10 2-3.1 Short-Circuit Current (Isc) 10 2-3.2 Open-Circuit Voltage (Voc) 10 2-3.3 Fill Factor (FF) 11 2-3.4 Power Conversion Efficiency (PCE) 11 Chapter 3 Experiment 13 3-1 Device Structure 13 3-2 Materials of Photovoltaic Cell 13 3-3 Process of Device Fabrication 14 3-3.1 Pre-Cleaning ITO Substrate 15 3-3.2 UV Ozone Treatment of ITO Surface 15 3-3.3 Fabrication of Hole Transport Layer 15 3-3.4 Fabrication of Active Layer 15 3-3.5 Fabrication of Electron Transport Layer 16 3-3.6 Fabrication of Buffer Layer 16 3-3.7 Fabrication of Cathode 16 Chapter 4 Results and Discussions 17 4-1 X-Ray Diffraction 17 4-2 Scanning Electron Microscope 19 4-3 UV-vis Absorption Spectrum 20 4-4 J-V Characteristics 21 4-5 External Quantum Efficiency 22 4-6 Space Charge Limited Current 23 4-7 The Ethylammonium Iodide Additives Utilizing in Formamidinium-base Perovskite Solar Cell 24 Chapter 5 Conclusion 26 References 27 Figures 33

    [1] D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A new silicon p‐n junction photocell for converting solar radiation into electrical power," Journal of Applied Physics, vol. 25, no. 5, pp. 676–677, 1954.
    [2] A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050–6051, 2009.
    [3] J. H. Im, C. R. Lee, J. W. Lee, S. W. Parka and N. G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell," Nanoscale, vol. 3, no. 10, pp. 4088–4093, 2011.
    [4] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. H. Baker, J. H. Yum, J. E. Moser, M. Grätzel and N. G. Park, "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%," Scientific Reports, vol. 2, no. 591, 2012.
    [5] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, "Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells," Nano Letters, vol. 13, no. 4, pp. 1764–1769, 2013.
    [6] J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Grätzel, "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, vol. 499, pp. 316–319, 2013.
    [7] M. Liu, M. B. Johnston and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, pp. 395–398, 2013.
    [8] "Research Cell Record Efficiency Chart," National Renewable Energy Laboratory (NREL), [Online]. Available: https://www.nrel.gov/pv/assets/images/efficiency-chart.png.
    [9] "General Perovskite Information," [Online]. Available: http://webmineral.com/data/Perovskite.shtml.
    [10] L. Zheng, D. Zhang, Y. Ma, Z. Lu, Z. Chen, S. Wang, L. Xiao and Q. Gonga, "Morphology control of the perovskite films for efficient solar cells," Dalton Transactions, vol. 44, no. 23, pp. 10582–10593, 2015.
    [11] C. Wehrenfennig, G. E. Eperon, M. B. Johnston and H. J. Snaith, "High charge carrier mobilities and lifetimes in organolead trihalide perovskites," Advanced Materials, vol. 26, no. 10, pp. 1584–1589, 2013.
    [12] J. H. Im, J. Chung, S. J. Kim and N. G. Park, "Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3," Nanoscale Research Letters, pp. 353, 2012.
    [13] V. M. Goldschmidt, "Die gesetze der krystallochemie," Die Naturwissenschaften, vol. 14, no. 21, pp. 477–485, 1926.
    [14] Z. Li, M. Yang, J. S. Park, S. H. Wei, J. J. Berry and K. Zhu, "Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys," Chemistry of Materials, vol. 28, no. 1, pp. 284–292, 2016.
    [15] M. A. Green, A. Ho-Baillie and H. J. Snaith, "The emergence of perovskite solar cells," Nature Photonics, vol. 8, pp. 506–514, 2014.
    [16] D. J. Seol, J. W. Lee and N. G. Park, "On the role of interfaces in planar-structured HC(NH2)2PbI3 perovskite solar cells," ChemSusChem., vol. 8, no. 14, pp. 2414–2419, 2015.
    [17] H. L. Hsu, C. C. Chang, C. P. Chen, B. H. Jiang, R. J. Jenga and C. H. Cheng, "High-performance and high-durability perovskite photovoltaic devices prepared using ethylammonium iodide as an additive," Journal of Materials Chemistry A, vol. 3, pp. 9271–9277, 2015.
    [18] M. Pagliaro, G. Palmisano and R. Ciriminna, Flexible solar cells, New York: John Wiley & Sons, 2008.
    [19] J. Jeong, "PHOTOVOLTAICS: Measuring the 'Sun'," 2009. [Online]. Available: http://www.laserfocusworld.com/articles/2009/05/photovoltaics-measuring-the-sun.html.
    [20] T. Ikegami, T. Maezono, F. Nakanishi, Y. Yamagata, K. Ebihara, "Estimation of equivalent circuit parameters of PV module and its application to optimal operation of PV system," Solar Energy Materials & Solar Cells, vol. 67, pp. 389-395, 2001.
    [21] Q. Xu, F. Wang, Z. Tan, L. Li, S. Li, X. Hou, G. Sun, X. Tu, J. Hou and Y. Li, "High-performance polymer solar cells with solution-processed and environmentally friendly CuOx anode buffer layer," ACS Applied Materials & Interfaces, vol. 5, no. 21, pp. 10658–10664, 2013.
    [22] K. Fehse, K. Walzer, K. Leo, W. Lövenich, A. Elschner, "Highly conductive polymer anodes as replacements for inorganic materials in high-efficiency organic light-emitting diodes," Advanced Materials, vol. 19, no. 3, pp. 441–444, 2007.
    [23] J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen and T. C. Wen, "CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells," Advanced Materials, vol. 25, no. 27, pp. 3727–3732, 2013.
    [24] L. S. C. Pingree, B. A. MacLeod and D. S. Ginger, "The changing face of PEDOT:PSS films: substrate, bias, and processing effects on vertical charge transport," The Journal of Physical Chemistry C, vol. 112, no. 21, pp. 7922–7927, 2008.
    [25] S. H. Yoo, J. M. Kum and S. O. Cho, "Tuning the electronic band structure of PCBM by electron irradiation," Nanoscale Research Letters, vol. 6, 2011.
    [26] J. Y. Jeng, K. C. Chen, T. Y. Chiang, P. Y. Lin, T. D. Tsai, Y. C. Chang, T. F. Guo, P. Chen, T. C. Wen and Y. J. Hsu, "Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells," Advanced Materials, vol. 26, pp. 4107–4113, 2014.
    [27] W. Cai, X. Gong and Y. Cao, "Polymer solar cells: recent development and possible routes for improvement in the performance," Solar Energy Materials & Solar Cells, vol. 94, no. 2, pp. 114–127, 2010.
    [28] P. Peumans, V. Bulovic´, and S. R. Forrest, "Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes," Applied Physics Letters, vol. 76, no. 19, pp. 2650–2652, 2000.
    [29] P. Peumans, V. Bulović, and S. R. Forrest, "Efficient, high-bandwidth organic multilayer photodetectors," Applied Physics Letters, vol. 76, no. 26, pp. 3855–3857, 2000.
    [30] H. Yoshida, "Electron transport in bathocuproine interlayer in organic," The Journal of Physical Chemistry C, vol. 119, no. 43, pp. 24459–24464, 2015.
    [31] "X-ray Diffraction and Scattering | AXS Bruker | Bruker," Bruker Corporation, [Online]. Available: https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/x-ray-diffraction.html.
    [32] R. Wu, B. Yang, C. Zhang, Y. Huang, Y. Cui, P. Liu, C. Zhou, Y. Hao, Y. Gao and J. Yang, "Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods," The Journal of Physical Chemistry C, vol. 120, no. 13, pp. 6996–7004, 2016.
    [33] "SU8000FamilyBrochure.pdf," Hitachi High-Technologies Corporation, [Online]. Available: http://www.hitachi-hightech.com/file/ca/pdf/library/literature/SU8000FamilyBrochure.pdf.
    [34] A. L. Patterson, "The scherrer formula for x-ray particle size determination," Physical Review, vol. 56, no. 10, pp. 978–982, 1939.
    [35] K. M. Boopathi, R. Mohan, T. Y. Huang, W. Budiawan, M. Y. Lin, C. H. Lee, K. C. Ho and C. W. Chu, "Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives," Journal of Materials Chemistry A, vol. 4, pp. 1591-1597, 2016.
    [36] "U-4100_General_Brochure.pdf," Hitachi High-Technologies Corporation, [Online]. Available: http://www.hitachi-hightech.com/file/us/pdf/library/literature/U-4100_General_Brochure.pdf.
    [37] Y. Zhang, J. Wang, Y. Zhao, J. Zhai, L. Jiang, Y. Song and D. Zhua, "Photonic crystal concentrator for efficient output of dye-sensitized solar cells," Journal of Materials Chemistry, vol. 18, pp. 2650–2652, 2008.
    [38] J. J. Li, J. Y. Ma, Q. Q. Ge, J. S. Hu, D. Wang and L. J. Wan, "Microscopic investigation of grain boundaries in organolead halide perovskite solar cells," ACS Applied Materials & Interfaces, vol. 7, no. 51, pp. 28518–28523, 2015.
    [39] M. A. Lampert and P. Mark, Current injection in solids, New York: Academic Press, 1970.
    [40] M. Bajpai, K. Kumari, R. Srivastava, M. Kamalasanan, R. Tiwari and S. Chand, "Electric field and temperature dependence of hole mobility in electroluminescent PDY 132 polymer thin films," Solid State Communications, vol. 150, pp. 581–584, 2010.
    [41] E. Zhou, Z. Tan, Y. Yang, L. Huo, Y. Zou, C. Yang and Y. Li, "Synthesis, hole mobility, and photovoltaic properties of cross-linked polythiophenes with vinylene−terthiophene−vinylene as conjugated bridge," Macromolecules, vol. 40, no. 6, pp. 1831–1837, 2007.

    無法下載圖示 校內:2022-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE