簡易檢索 / 詳目顯示

研究生: 鍾采凌
Zhong, Cai-Ling
論文名稱: 轉爐石全取代粗粒料之再生瀝青混凝土工程性質
Engineering Properties of Recycled Bituminous Mixtures Blended with Reclaimed Asphalt Pavements Incorporating Basic Oxygen Furnace Slag as Coarse Aggregate
指導教授: 陳建旭
Chen, Jian-Shiuh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 127
中文關鍵詞: 轉爐石老化瀝青比率再生瀝青混凝土膨脹性開裂
外文關鍵詞: BOF slag, RAP Binder Ratio, Recycled Asphalt Concrete, Expansion Characteristics, Cracking
相關次數: 點閱:95下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要…………………………………………………………………………………I 目錄……………………………………………………………………………IX 圖目錄…………………………………………………………………………….XII 表目錄………………………………………………………………………….XIV 第一章 緒論 1-1 1.1 前言 1-1 1.2 研究動機 1-3 1.3 研究目的 1-3 1.4 研究範圍 1-3 1.5 名詞解釋 1-4 第二章 文獻回顧 2-1 2.1 轉爐石 2-1 2.1.1 轉爐石基本材料性質 2-1 2.1.2 轉爐石對瀝青混凝土性質之影響 2-2 2.1.3 轉爐石安定化 2-3 2.2 回收瀝青混凝土(RAP) 2-4 2.2.1 美國RAP應用情形 2-4 2.2.2 台灣RAP應用情形 2-6 2.3 轉爐石再生瀝青混凝土 (BOF-RAC) 之研究 2-6 2.4 飛散磨損試驗 2-7 2.5 車轍輪跡試驗 2-7 2.6 抗水侵害性試驗 2-8 2.7 開裂試驗 2-8 2.8 轉爐石再生瀝青混凝土(BOF-RAC)工程性質 2-13 第三章 研究計畫 3-1 3.1 研究流程 3-1 3.2 試驗材料 3-3 3.2.1 轉爐石全取代粗粒料之瀝青回收料(BOF-RAP) 3-3 3.2.2 天然粒料物理性質 3-6 3.2.3 傳統新鮮瀝青AC-10 3-7 3.2.4 填充料物理性質 3-9 3.3 轉爐石再生瀝青混凝土配合設計 3-9 3.3.1 BOF-RAC配合設計流程 3-12 3.3.2 瀝青萃取與回收試驗 3-20 3.3.3 動態剪切流變儀 (DSR) 試驗 3-23 3.3.4 高溫性能計算範例 3-24 3.3.5 中溫性能計算範例 3-26 3.3.6 老化瀝青比率(RAP Binder Ratio, RBR) 3-27 3.3.7 高溫績效性能拌和圖 3-27 3.3.8 中溫績效性能拌和圖 3-29 3.4 密級配瀝青混凝土配合設計 3-30 3.5 瀝青混凝土工程性質 3-30 3.5.1 穩定值試驗 3-31 3.5.2 滯留強度指數(Tensile Strength Ratio, TSR) 3-32 3.5.3 飛散試驗 3-32 3.5.4 開裂試驗 3-34 3.5.5 車轍輪跡試驗 3-37 3.5.6 膨脹性試驗 3-39 第四章 結果與討論 4-1 4.1 材料性質 4-1 4.1.1 轉爐石瀝青回收料性質 4-1 4.1.2 天然粒料物理性質 4-4 4.2 傳統天然粒料密級配瀝青混凝土(NA-DGAC) 4-6 4.2.1 新鮮瀝青AC-10物理性質 4-6 4.2.2 NA-DGAC配合設計 4-6 4.3 轉爐石再生瀝青混凝土 (BOF-RAC) 配合設計 4-8 4.3.1 新鮮瀝青AC-10高溫績效(PGH)、中溫績效(PGI)等級 4-9 4.3.2 BOF-RAC萃取瀝青物理性質 4-10 4.3.3 老化瀝青比率(RBR)之拌和圖表 4-10 4.3.4 BOF-RAC級配曲線 4-13 4.3.5 RBR與BOF-RAP添加比例 4-16 4.4 BOF-RAC和NA-DGAC體積性質 4-16 4.4.1 RBR對體積性質的影響 4-18 4.4.2 膨脹性試驗 4-20 4.5 BOF-RAC工程性質 4-23 4.5.1 穩定值試驗 4-23 4.5.2 滯留強度指數 4-25 4.5.3 飛散試驗 4-26 4.5.4 開裂試驗 4-29 4.5.5 車轍輪跡試驗 4-34 第五章 結論與建議 5-1 5.1 結論 5-1 5.2 建議 5-3 參考文獻 參-1 附錄 附錄-1

    中聯資源 (2022) 爐石種類:轉爐石,https://www.chc.com.tw/source.html,中聯資源股份有限公司,2022年9月29日瀏覽。
    沈得縣、林志棟、陳偉全、陳世晃、黃隆昇、陳裕新 (2010) 轉爐石應用於瀝青混凝土鋪面使用手冊,中華鋪面工程學會,桃園。
    行政院公共工程委員會 (2013) 再生瀝青混凝土鋪面,施工綱要規範第02966章,台北。
    吳建弘 (2019) 含轉爐石刨除料應用於再生瀝青混凝土成效評估,國立中央大學土木工程研究所碩士論文,桃園。
    許富順 (2023) 改質再生瀝青混凝土老化後的工程性質,國立成功大學土木工程研究所碩士論文,台南。
    Anderson, D. A., D.W. Christensen, H. U. Bahia, R. Dongre, M. G. Sharma, C. E. Antle, and J. Button (1994) Binder Characterization and Evaluation. Strategic Highway Research Program (SHRP)-A-369, National Research Council, Washington, D.C.
    Asphalt Institute (2014) Asphalt Mix Design Methods. MS-2, 7th edition, Lexington, KY.
    Chen, Z., S. Wu, J. Wen, M. Zhao, M. Yi, and J. Wan (2015) Utilization of gneiss coarse aggregate and steel slag fine aggregate in asphalt mixture. Construction and Building Materials, 93: 911-918.
    Cui, P., S. Wu, Y. Xiao, Q. Liu, and F. Wang (2021) Hazardous characteristics and variation in internal structure by hydrodynamic damage of BOF slag-based thin asphalt overlay. Journal of Hazardous Materials, 412: 125344.
    Diefenderfer, D. S., and B. F. Bowers (2019) Initial Approach to Performance (Balanced) Mix Design: The Virginia Experience. Transportation Research Record, 2673(2): 335–345.
    European Slag Association. Basic oxygen furnace slag. https://www.euroslag.com/products/bos/. Accessed 18 August, 2022.
    Goli, A. (2021) The study of the feasibility of using recycled steel slag aggregate in hot mix asphalt. Case Studies in Construction Materials, 16:e00861.
    Habbouche, J., I. Boz, B. Shane Underwood, C. Castorena, S. Gulzar, A. Fried, and J. Preciado (2022) Review from multiple perspectives for the state of the practice on the use of recycled asphalt materials and recycling agents in asphalt concrete surface mixtures. Transportation Research Record, 2676(4): 407-420.
    Idaho Transportation Department (2014) Idaho Standard Method of Test For Determination of Reclaimed Asphalt Pavement (RAP) Aggregate Bulk (Dry) Specific Gravity (Gsb). Section 520: IT 146-16, Idaho.
    Kambole, C., P. Paige-Green, W. K. Kupolati, J. M. Ndambuki, and A. O. Adeboje (2017) Basic oxygen furnace slag for road pavements: A review of material characteristics and performance for effective utilisation in southern Africa. Construction and Building Materials, 148: 618-631.
    Kumar., P., D. S. Kumar, K. Marutiram, and S. Prasad (2017) Pilot-scale steam aging of steel slags. Waste Management & Research, 35(6): 602- 609.
    Kong., D., M. Chen, J. Xie, M. Zhao, and C. Yang (2019) Geometric characteristics of BOF slag coarse aggregate and its influence on asphalt concrete. Materials, 12(5): 741.
    Lee, W., T. Cheng, K. Lin, K. Lin, C. Wu, and C. Tsai (2020) Geopolymer technologies for stabilization of basic oxygen furnace slags and sustainable application as construction materials. Sustainability, 12: 5002.
    Hu, R., X. Zhou, S. Wu, C. Yang, J. Xie, D. Yang, and Q. Ye (2020) Bonding behavior and its affecting factors between basic oxygen furnace slag and asphalt. Construction and Building Materials, 253: 119153.
    Shen., D., C. Wu, and J. Du (2009) Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture. Construction and Building Materials, 23(1): 453-461.
    Sala, D. V., N. Tran, F. Yin, and B. F. Bowers (2022) Evaluating impact of corrected optimum asphalt content and benchmarking cracking resistance of Georgia mixtures for balanced mix design implementation. Transportation Research Record 2022, 2676(5): 13–29.
    Tseng., Y., Y. Lee, and B. Sheu (2015) Application and Breakthrough of BOF slag Modification Technique. China Steel Technical Report, 28: 46-51.
    Tukaziban, A., C. Shon, I. Orynbassarov, S. Sandybay, D. Syzdykov, D. Zhang, and J. R. Kim (2022) Mechanical, swelling, and thermal properties of geopolymer mixture containing basic oxygen. IOP Conference Series: Earth and Environmental Science, 1050: 012021.
    Wang, G.C. (2016) The Utilization of Slag in Civil Infrastructure Construction. Woodhead Publishing, 1st edition, UK.
    Xue, Y., S. Wu, H. Hou, and J. Zha (2006) Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture. Journal of Hazardous Materials, 138: 261-268.
    Xie, J., J. Chen, S. Wu, J. Lin, and W. Wei (2013) Performance characteristics of asphalt mixture with basic oxygen furnace slag. Construction and Building Materials, 38: 796-803.
    Yildirim, I. Z., and M. Prezzi (2009) Use Of Steel Slag In Subgrade   Applications. FHWA/IN/JTRP-2009/32, Joint Transportation Research  Program, West Lafayette, Indiana.
    Yildirim, I. Z., and M. Prezzi (2011) Chemical, mineralogical, and morphological properties of steel slag. Hindawi Publishing Corporation Advances in Civil Engineering, Houston.
    Yang, C., S. Wu, P. Cui, S. Amirkhanian, Z. Zhao, F. Wang, L. Zhang, M. Wei, X. Zhou, and J. Xie (2022) Performance characterization and enhancement mechanism of recycled asphalt mixtures involving high RAP content and steel slag. Journal of Cleaner Production, 336: 130484.
    Zhou, F., S. Im, L. Sun, and T. Scullion (2017) Development of an ideal cracking test for asphalt mix design, quality control and quality assurance. Road Materials and Pavement Design,18(4): 1-23.

    無法下載圖示 校內:2028-07-20公開
    校外:2028-07-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE