簡易檢索 / 詳目顯示

研究生: 葉育如
Yeh, Yu-Ju
論文名稱: 最佳化函數設定於微型電網下電力調度之研究
Study on Settings of the Optimization Function for Microgrid Power Dispatch
指導教授: 張簡樂仁
Chang-Chien, Le-Ren
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 91
中文關鍵詞: 微型電網電能調度最佳化排程
外文關鍵詞: microgrid, power dispatch, optimization scheduling
相關次數: 點閱:94下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以風力發電為微型電網之再生能源,在考慮併聯電網的情況下,供應含電動車及儲能電池組的家庭負載,特別針對一般用戶將電動車於夜間充電的習慣,在以購電成本最低的目標下進行電能調度最佳化。
    利用Matlab內建的基因演算法,在已知時間電價、預測風力發電量與負載的條件下,提出一種近似權重分配的概念於目標函數上,期待以權重參數的大小來影響充放電的優先順序以達到預期的充放電效果及最小成本。藉由不同案例的模擬,除驗證此法之可行性,同時也求得最佳的參數設定值。
    為了使最佳化函數更貼近真實狀況,故以預先調度好的結果為基礎,再加上預測的誤差項於最佳化問題中,最後將預測誤差考量在模擬中,驗證了此法確實更能反應出真實狀況。

    This research focuses on the power dispatch optimization for achieving minimal electricity cost under a utility-grid connected microgrid scheme which includes wind power generator, household load, electric vehicles (EVs), and battery energy storage system (BESS). The operating principle is to make balance between generation and demand while EV loads are active during the nighttime.

    Based on the preknowledge of time-of-use (TOU) tariff as well as forecasts of wind and load, a weighting factor concept is applied to the objective function to prioritize the behaviors of power charging and discharging for achieving the desired condition at minimal cost. This optimization problem is solved by genetic algorithm (GA) written in MATLAB. Various simulation scenarios are conducted not only to validate the effectiveness of the proposed method but also to survey the best weighting values in the objective function.

    In order to make the optimization problem be more practical, considering a prediction error item is supplemented to the optimization constraints. Simulation considering the prediction error is conducted and the result shows that the proposed optimization function could respond closer to the real conditions.

    摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 符號索引 XV 第一章 緒論 1 1.1研究背景與動機 1 1.2本文貢獻 3 1.3本文架構 5 第二章 調度情況描述 7 2.1再生能源發電系統 7 2.1.1風力發電 8 2.2時間電價費率 10 2.3用戶負載 12 2.3.1電動車電池組 13 2.4儲能電池組 16 第三章 調度最佳化數學模型建構 17 3.1問題描述 17 3.1.1控制目標函數 18 3.1.2限制條件 22 3.1.3最佳化函數總結 26 3.2基因演算法 27 3.2.1基因演算法流程 28 第四章 最佳化函數參數設定與分析 31 4.1案例討論 31 4.1.1低負載但無充飽儲能電池組之情形 34 4.1.2低負載且有充飽儲能電池組之情形 40 4.1.3高負載但無充飽儲能電池組之情形 47 4.1.4高負載且有充飽儲能電池組之情形 53 4.2結果分析與比較 58 第五章 案例模擬 61 5.1模擬情況說明 61 5.1.1最佳化問題數學模型 62 5.1.2最佳化函數總結 68 5.2案例討論 69 5.2.1精確的風力預測 70 5.2.2不精確的風力預測 76 第六章 結論與未來研究方向 84 6.1 結論 84 6.2 未來研究方向 85 參考文獻 88

    [1]H. Daneshi and H. Khorashadi-Zadeh, “Microgrid energy management system: A study of reliability and economic issues,” Power and Energy Society General Meeting, 2012 IEEE, pp. 1-5, 22-26 July 2012.
    [2]J. Huang, C. Jiang and R. Xu, “A review on distributed energy resources and microgrid,” Renewable Sustain. Energy Rev., vol. 12, no. 9, pp. 2472-2483, December 2008.
    [3]洪穎怡、許炎豐、陳士麟, “微電網試驗場之研製,” 台灣電力公司完成報告, 民國一百年.
    [4]M. Agrawal and A. Mittal, “Micro Grid Technological Activities across the Globe: A Review,” International Journal of Research and Reviews in Applied Sciences, vol. 7, issue 2, May 2011.
    [5]Department of Energy Technology, Aalborg University, “Introduction on MicroGrids.” [Online]. Available: http://www.et.aau.dk/research-programmes/microgrids/.
    [6]P. Kulshrestha, L. Wang, M. Y. Chow and S. Lukic, “Intelligent Energy Management System Simulator for PHEVs at Municipal Parking Deck in a Smart Grid Environment,” in Proc. 2009 IEEE Power and Energy Society General Meeting, pp. 1-6, 26-30 July 2009.
    [7]P. Attaviriyanupap, H. Kita, E. Tanaka and J. Hasegawa, “A Hybrid EP and SQP for Dynamic Economic Dispatch with Nonsmooth Fuel Cost Function,” Power Engineering Review, IEEE, vol. 22, no. 4, pp. 77, April 2002.
    [8]Z. L. Gaing, “Constrained Dynamic Economic Dispatch Solution Using Particle Swarm Optimization,” Power Engineering Society General Meeting, 2004 IEEE, pp. 153-158, vol. 1, 6-10 June 2004.
    [9]Y. Yao, C. Meyers, S. Smith and T. Edmunds, “Large-scale Stochastic Optimization for Unit Commitment and Economic Dispatch,” Lawrence Livermore National Laboratory (LLNL), Livermore, CA, 2012.
    [10]B. Stoltenberg, K. Clark and S. K. Negi, “Market-Based Indian Grid Integration Study Options,” in World Renewable Energy Forum, Colorado, 13-17 May 2012.
    [11]林俊宏, “太陽能-風力混合發電系統之可用度及成本/效益評估,” 碩士論文, 清雲科技大學, 民國九十四年六月.
    [12]郭泰億, “微型電網模型之建構及功率控制策略,” 碩士論文, 國立成功大學, 民國一百零二年六月.
    [13]A.-H. Mohsenian-Rad and A. Leon-Garcia, “Optimal Residential Load Control With Price Prediction in Real-Time Electricity Pricing Environments,” IEEE Transactions on Smart Grid, vol. 1, no. 2, pp. 120-133, September 2010.
    [14]廖建棠、簡振宇、周冠宇、楊宏澤, “智慧電網下電動車之電能調度與需量反應,” 中華民國第三十三屆電力工程研討會, 民國一百零一年十二月七-八日.
    [15]M. Ghofrani, A. Arabali and M. Etezadi-Amoli, “Electric Drive Vehicle to Grid Synergies with Large Scale Wind Resources,” Power and Energy Society General Meeting, 2012 IEEE, pp. 1-6, 22-26 July 2012.
    [16]C-T Li, C. Ahn, H. Peng and J. Sun, “Synergistic Control of Plug-In Vehicle Charging and Wind Power Scheduling,” IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 1113-1121, May 2013.
    [17]經濟部工業局, “智慧電動車工業技術輔導推廣計畫,” 經濟部工業局101年度專案計畫期末執行成果報告, 民國一百零一年十二月.
    [18]J. Soares, H. Morais and Z. Vale, “Particle Swarm Optimization Based Approaches to Vehicle-to-Grid Scheduling,” Power and Energy Society General Meeting, 2012 IEEE, pp. 1-8, 22-26 July 2012.
    [19]黃詩婷, “使用基因演算法進行微電網前一日機組排程,” 碩士論文, 國立臺灣海洋大學, 民國一百年六月.
    [20]K.P. Wong and Y.W. Wong, “Genetic and Genetic/Simulated-Annealing Approaches to Economic Dispatch,” IEE Proceedings-, Generation, Transmission and Distribution, vol. 141, no. 5, pp. 507-513, September 1994.
    [21]機械與電腦輔助工程系, 聖約翰科技大學, “基因演算法簡介,” 模糊控制遠距系統之各單元補充講義.

    下載圖示 校內:2016-08-11公開
    校外:2019-08-11公開
    QR CODE