簡易檢索 / 詳目顯示

研究生: 洪楠傑
Hong, Nan-Jie
論文名稱: 量子系統H_∞強健控制數值求解
Numerical Method of Quantum System H_∞ Robust Control
指導教授: 楊憲東
Yang, Ciann-Dong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 86
中文關鍵詞: 量子控制非線性控制H_∞控制數值求解N電子自旋耦合的模型
外文關鍵詞: Quantum control, Nonlinear H_∞ control, Numerical solution, N-electron spin coupling model
相關次數: 點閱:197下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的目的是利用『非線性H_∞強健控制數值求解』的方式,將H_∞控制應用於微觀世界的量子系統。電子在互相糾纏時會傳遞量子訊息,這是量子電腦與量子通訊的一切基礎,因此量子狀態的操縱與控制變得極為重要。本論文將考慮多電子自旋耦合系統的模型,引入外擾並設計H_∞量子控制器,透過H_∞控制的強健功能,使得量子系統在外界環境的干擾下,能夠保持量子態的穩定。
    目前國際上對電子自旋耦合模型的討論僅侷限於單一電子或雙電子,本論文將擴展現有文獻的成果,建立描述N個電子自旋耦合的模型,並透過磁場的加入,實現以『磁場控制電子』的方法。論文的主要工作是將薛丁格方程式化成多電子自旋耦合的雙線性系統,接著將Hamilton-Jacobi PDE方程式化簡成等義的狀態相依Riccati方程式,透過數值疊代的求解建立H_∞量子控制器,並引入複數化外擾來模擬量子系統的環境外擾。最後以雙電子、三電子和四電子自旋來驗證量子系統H_∞控制的強健性,同時檢測在各種環境外擾的作用下,量子H_∞強健控制是否能確保量子態的穩定。

    The main purpose of this thesis is to apply a numerical solution of nonlinear H_∞ robust control to the microscopic quantum system. When electrons are entangled with each other, quantum information is transmitted. This is the basis of quantum computers and quantum communication. Therefore, the manipulation and control of quantum states become extremely important. This thesis considers the nonlinear control of multi-electron spin coupling system in the presence of external disturbances. Through the robustness of H_∞ control, the quantum system is shown to remain stable under the disturbance of the external environment.
    At present, the discussion of the electron spin coupling model is limited to a single electron or two electrons. This thesis will generalize the results of the existing literature to establish a model describing N spin-coupling electron, and realize the H_∞ control through the addition of a magnetic field. The main work of the thesis is to transform the Schrödinger equation into a multi-electron bilinear equation. Then the Hamilton-Jacobi PDE is reduced to the equivalent state-dependent Riccati equation, and the H_∞ quantum controller is solved by numerical iteration. Furthermore, complex external disturbances are introduced to establish the environmental disturbances of quantum systems. Finally, two-electron, three-electron and four-electron spin coupling models are used to verify the robustness of the H_∞ control by testing whether it can ensure the stability of the quantum system under the influence of various external disturbances.

    摘要 I Numerical Method of Quantum System H_∞ Robust Control II 致謝 VIII 目錄 IX 圖目錄 XI 表目錄 XIV 符號表 XV 第 1 章 緒論 1 1.1 背景及文獻回顧 1 1.2 研究動機 4 1.3 文章架構 5 第 2 章 量子位元控制的數學基礎 8 2.1 量子系統狀態的表示 8 2.2 量子系統狀態的演化 9 2.3 Hamiltonian算符的矩陣表示式 12 2.4 n電子的Hamiltonian量 14 2.5 電子耦合系統的建模 16 2.6 電子自旋運動的向量表示式 18 第 3 章 非線性H_∞控制的數值求解 22 3.1 矩陣範數(norm)與系統穩定性的關係 22 3.2 雙線性系統的H_∞強健控制設計 24 3.3 雙線性H_∞控制的數值求解步驟 26 第 4 章 非線性H_∞量子位元控制 31 4.1 雙電子H_∞強健控制 31 4.2 比權因子ρ的探討 50 4.3 外擾 w 與最惡劣外擾力 w^* 54 4.4 H_∞控制與系統未控制時的差異 60 4.5 三電子H_∞強健控制 63 4.6 四電子H_∞強健控制 69 第 5 章 總結 78 5.1 結果與討論 78 5.2 未來研究方向 79 參考文獻 80 附錄A 84

    [1] Dong, D., Petersen, I.R.,Quanturn control theory and applications: A survey,IET Control Theory Appl., Vol. 4,Iss. 12, pp. 2651-2671 2651 doi: 10.1049/iet-cta.2009.0508,2010.
    [2] Dong, D, Chen, Z., Research on Modeling and Simulation of Quantum Control System, 5th World Congress on Intelligent Control and Automation, Hangzhou, P.R. China 15-19 June,2004.
    [3] Dong, D, and Petersen, I. R., Sampled-Date Control of Two-level Quantum Systems Based on Sliding Mode Design, 50th IEEE Conference on Decision and Control and European Control Conference(CDC-ECC),Orlando, FL, USA, 12-15 December,2011.
    [4] 陳昱升,非線性H_∞量子位元強健控制,國立成功大學碩士學位論文,2017
    [5] A. P. Peirce, M. A. Dahleh, Optimal control of quantum-mechanical systems: Existence, numerical approximation and applications, Physical Review, 37 (12): 4950-4956, 1998.
    [6] S. Shi, H. Rabitz, Selective excitation in harmonic molecular systems by optimally designed fields, Chemical Physics, 139:185-199, 1989.
    [7] R. Kosloff, S. A. Rice, P. Gaspard, S. Tersigni, D. J. Tannor, Wave packet Dancing: Achieving chemical selectivity by shaping light pulses, Chemical Physics, 139 :201-220, 1989.
    [8] W. S.Warren, H. Rabitz,M. A. Dahleh, Coherent Control of Quantum Dynamics: The Dream Is Alive, Science,259(12):1581-1585,1993.
    [9] Mirrahimi, M., Rouchon, P., and Turinici, G., Lyapunov control of bilinear Schrodinger equations, Automatica,41,pp.1987-1994,2005.
    [10] Sen Kuang, Shuang Cong, Lyapunov control methods of closed quantum systems ,Automatic, 44, 98-108,2008.
    [11] C. Brif, R. Chakrabrti, and H. Rabitz, ‘‘Control of quantum phenomena: past, present and future,’’ New Journal of Physics, vol. 12, p. 075008, 68 pages, 2010.
    [12] C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, Carpenter S. D.,Weber P. M.,WarrenW. S., Chem. Phys Lett., 280:151, 1997.
    [13] H. Rabitz, Alogorithms for closed loop control of quantum dynamics, IEEE International Conference on Decision and Control, 937-941,2000.
    [14] D. Dong, C. Chen, H. Li, and T. J. Tarn, ‘‘Quantum reinforcement learning,’’ IEEE Transactions on Systems, Man, and Cybernetics B, vol.38, no. 5, pp. 1207-1220, 2008.
    [15] Wang, J., and Wiseman, H.M.: ‘Feedback stabilization of an arbitrary pure state of a two-level atom,’ Phys. Rev. A, 64, p.063810, 2001.
    [16] Korotkov, A.N.: ‘Selective quantum evolution of a qubit state due to continuous measurement’, Phys. Rev. B, 63, p.115403, 2001.
    [17] Nurdin, H.I., James, M.R., and Petersen, I.R.: ‘Coherent quantum LQG control’. Automatica, 45, pp.18371846, 2009.
    [18].Rabitz, H.: ‘Optimal control od quantum system: Origins of inherent robusteness to control field fluctuations,’ Phys. Rev. A, 66, p.063405, 2002.
    [19] Doherty A. D.; Doyle J.; Mabuchi H.; Jacobs K.; Habib S. Robust control in the quantum domain, IEEE International Conference on Decision and Control, vol. 1: 949954, 2000.
    [20] V. Protopopescu, R. Perez, C. D’Helon and J. Schmulen, ‘‘Robust control of decoherence in realistic onequbit gates,’’ J. Phys. A: Math. Gen. 36, 2175-2189, 2003.
    [21] Maalouf, A. I. and Pertersen I. R., ‘‘Bounded Real Properties for a Class of Annihilation-Operator Linear Quantum Systems, IEEE Trans. Autom. Control, Vol. 56, pp.786801, 2011.
    [22] James, M. R., Nurdin, H. I. and Petersen, I. R, ‘‘H_∞ control of linear quantum stochastic systems’’,IEEE Trans. Auto. Control, 53, pp.17871803, 2008.
    [23] A. I. Maalouf and I. R. Petersen, ‘‘ Time varying H_∞ control for a class of linear quantum system: a dynamic game approach,’’Autimatica, vol. 48, pp. 2908-2916, 2012.
    [24] Jonker, P., Han, J, On Quantum & Classical Computing with Arrays of Superconducting Persistent Current Qubit, 0-7695-0740-9/00 IEEE,2000.
    [25] Adina BARILA, From Classical Computing to Quantum Computing,12th International Conference on Development and Application Systems, Suceva, Romania 15-17 May, 2014.
    [26] Bruni, C., Dipillo, G., and Koch, G.: ‘On the mathematical models of bilinear systems’, Ricerche di Automatica, 2,(1),pp. 11-26, 1971.
    [27] Aganovic, Z., and Gajic, Z.: ‘The successive approcimation procedure for finite-time optimal control of bilinear system’, IEEE Trans. Autom. Control, 42, pp. 1932-1935, 1994.
    [28] Aganovic, Z., and Gajic, Z.: ‘The successive approcimation procedure for steady state optimal control of bilinear system’, J. Optim. Theory Appl., 84, pp. 273-291, 1995.
    [29] Hong, Y.: ‘H_∞ control, stabilization, and input-output stability of nonlinear systems with homogenous properties’, Automatica, 37, pp. 819-829, 2001.
    [30] Tuan, H., and Hosoe, S.: ‘On robust and H_∞ controls for a class of linear and bilinear systems with nonlinear uncertainty’, Automatica, 33, pp.1373-1377, 1997.
    [31] Shimizy, E., Sampei, M., and Koga, M.: ‘Design of a nonlinear H_∞ state feedback controller for bilinear systems with nonlinear weight’, Proc. IEEE Conf. on Decision and Control, pp. 2323-2324, 1997.
    [32] Jerbi, H.: ‘Gloval feedback stabilization of new class of bilinear systems’, Syst. Control Lett., 42, pp. 313-320, 2001.
    [33] 叢爽,匡森, 糾纏態的探測與裝備:雙自旋系統的糾纏態裝備,載於量子系統控制理論與方法,中國科學技術大學出版社,中國,pp.332-337, 2013。
    [34] Yang, C. D., ‘‘Introduciton of Quantum System ’’,Department of Aeronautics and Astronautics,National Cheng Kung University, 2014, pp. 6.27-6.44.
    [35] A. J. van der Schaft, ‘‘L_2-Gain Analysis of Nonlinear system and Nonlinear State Feedback H_∞ Control ,’’ IEEE trans. On Automatic Control 37: 770-784, 1992.
    [36] B.-S. Kim, Y.-J. Kim and M.-T. Lim.: ‘Robust H_∞ state feedback control methods for bilinear systems ’, IEE Proc-Control Theory Appl., Vol. 152, No. 5, September 2005.
    [37] 王琪,王曉茜,一維傾斜場伊辛模型中的糾纏特性,長春理工大學,理學院,長春130022
    [38] B.Gardas, J Dziarmaga, WH Zurek ,M Zwolak ‘‘Defects in quantum computers’’,Scientific reports 8,Article number:4539(2018)
    [39] R. Islam, E.E. Edwards, K. Kim, S. Korenblit, C. Noh, H. Carmichael, G.-D. Lin, L.-M. Duan, C.-C. Joseph Wang, J.K. Freericks & C. Monroe ‘‘Onset of a quantum phase transition with a trapped ion quantum simulator’’, Nature Communications volume 2, Article number: 377 (2011)

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE