| 研究生: |
李國琛 Li, Guo-Chen |
|---|---|
| 論文名稱: |
具正交異向性與功能漸變性圓柱內含物
桿件抗扭剛度之分析 Torsional rigidity of a bar containing neutral cylindrically orthotropic inclusion and functionally graded inclusion |
| 指導教授: |
陳東陽
Chen, Tung-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 圓柱正交異向性 、功能漸變性 、扭轉剛度 、內含物 、中性扭轉 |
| 外文關鍵詞: | cylindrically orthotropic, functionally graded, torsional rigidity, neutral torsion, fiber |
| 相關次數: | 點閱:135 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文的主要目的為分析複合桿件的中性扭轉問題。此所謂的中性扭轉(neutral torsion)為以一內含物替換一均質桿件中的一部份後,將此置換過內含物之複合桿件施以扭力作用下,內含物外部即原均質桿件部分之翹曲函數(warping function)不改變。而本文則選擇兩種不同材料性質的內含物來做討論。其一為圓柱正交異向性(cylindrically orthotropic)內含物。;第二部分則為功能漸變性(functionally graded)圓柱內含物。而在此中性扭轉的情況下,本文也就各章節的內容計算了內含物與全複合桿件斷面的扭轉剛度(torsional rigidity)。
1. Booker, J. R. & Kitipornchai, S., Torsion of multilayered rectangular section, J. Engng Mech, 97, pp. 1451-1468, 1971
2. Chen, T., Torsion of a rectangular checkerboard and the analogy between rectangular and curvilinear cross-section, Quart. J. Mech. Appl. Math, 54, pp. 227-241, 2001
3. Chen, T., Benvensite, Y. & Chuang, P. C., Exact solution in torsion of composite bars: thickly coated neutral inhomogeneities and composite cylinder assemblages, Proc. R. Soc. Lond. A, in press, 2002
4. Chen, T. & Huang, Y. L., Saint-Venant torsion of a two-phase circumferentially symmetric compound bar, J. Elasticity, 53, pp. 109-124, 1998
5. C.O. Horgan & A.M. Chan., Torsion of functionally graded isotropic linearly elastic bars, J. Elasticity, 52, pp. 181-199, 1999
6. F. Rooney & M. Ferrari., Tension,bending,and flexure of functionally graded cylinders, Int. J. Solids Struct., 38, pp. 413-421, 2001
7. J. Q. Tarn., Exact solutions for functionally graded anisotropic cylinders subjected to thermal and mechanical loads, Int. J. Solids Struct., 38, pp. 8189-8206, 2001
8. Kuo, Y. M. & Conway, H. D., Torsion of composite tubes and cylinders, Int. J. Solids Struct., 9, pp. 1553-1565, 1973
9. Muskhelishvili, N. I., Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen, 1953
10. S. Torquato, T.M. Truskett & P.G. Debenedetti., Is random close packing of spheres well defined?, Physical Review Letters, Vol. 84, No.10, pp. 2064-2067, 2000
11. T. Reiter, G. J. Dvorak and V. Tvergaard., Micromechanical models for graded composite materials, J. Mech. Phys. Solids, Vol. 45, No. 8, pp. 1281-1302, 1997
12. Sokolnikoff I.S., Mathematical theory of elasticity, McGraw-Hill, New York, 1956
13. Timoshenko, S. P. & Goodier, J. N., Theory of Elasticity. McGraw-Hill, New York, 1970