簡易檢索 / 詳目顯示

研究生: 李國琛
Li, Guo-Chen
論文名稱: 具正交異向性與功能漸變性圓柱內含物 桿件抗扭剛度之分析
Torsional rigidity of a bar containing neutral cylindrically orthotropic inclusion and functionally graded inclusion
指導教授: 陳東陽
Chen, Tung-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 67
中文關鍵詞: 圓柱正交異向性功能漸變性扭轉剛度內含物中性扭轉
外文關鍵詞: cylindrically orthotropic, functionally graded, torsional rigidity, neutral torsion, fiber
相關次數: 點閱:135下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文的主要目的為分析複合桿件的中性扭轉問題。此所謂的中性扭轉(neutral torsion)為以一內含物替換一均質桿件中的一部份後,將此置換過內含物之複合桿件施以扭力作用下,內含物外部即原均質桿件部分之翹曲函數(warping function)不改變。而本文則選擇兩種不同材料性質的內含物來做討論。其一為圓柱正交異向性(cylindrically orthotropic)內含物。;第二部分則為功能漸變性(functionally graded)圓柱內含物。而在此中性扭轉的情況下,本文也就各章節的內容計算了內含物與全複合桿件斷面的扭轉剛度(torsional rigidity)。

    摘要 Ⅰ 誌謝 Ⅱ 目錄 Ⅲ 圖目錄 Ⅴ 第一章 緒論 1.1 理論背景與介紹 1 1.2 研究動機 2 1.3 論文內容簡介 2 第二章 圓柱正交異向性(cylindrically orthotropic)內含物 4 2.1滿足均質桿件斷面為中性之圓柱正交異向性內含物 4 2.2 替換內含物後之全斷面扭轉剛度 9 2.3 不同斷面形狀之均質桿件 11 第三章 包含功能漸變性(functionally graded)圓柱內含物的圓形桿件 28 3.1 控制方程之建立與邊界條件 28 3.2 剪力模數對應翹曲函數之形式 31 3.3 替換內含物後之全斷面扭轉剛度 35 第四章 包含功能漸變性圓柱內含物的橢圓桿件 47 4.1 控制方程之建立與邊界條件 47 4.2 剪力模數對應翹曲函數之形式 49 4.3 替換內含物後之全斷面扭轉剛度 52 第五章 討論與建議 57 參考文獻 59 附錄A、B 61

    1. Booker, J. R. & Kitipornchai, S., Torsion of multilayered rectangular section, J. Engng Mech, 97, pp. 1451-1468, 1971

    2. Chen, T., Torsion of a rectangular checkerboard and the analogy between rectangular and curvilinear cross-section, Quart. J. Mech. Appl. Math, 54, pp. 227-241, 2001

    3. Chen, T., Benvensite, Y. & Chuang, P. C., Exact solution in torsion of composite bars: thickly coated neutral inhomogeneities and composite cylinder assemblages, Proc. R. Soc. Lond. A, in press, 2002

    4. Chen, T. & Huang, Y. L., Saint-Venant torsion of a two-phase circumferentially symmetric compound bar, J. Elasticity, 53, pp. 109-124, 1998

    5. C.O. Horgan & A.M. Chan., Torsion of functionally graded isotropic linearly elastic bars, J. Elasticity, 52, pp. 181-199, 1999

    6. F. Rooney & M. Ferrari., Tension,bending,and flexure of functionally graded cylinders, Int. J. Solids Struct., 38, pp. 413-421, 2001

    7. J. Q. Tarn., Exact solutions for functionally graded anisotropic cylinders subjected to thermal and mechanical loads, Int. J. Solids Struct., 38, pp. 8189-8206, 2001

    8. Kuo, Y. M. & Conway, H. D., Torsion of composite tubes and cylinders, Int. J. Solids Struct., 9, pp. 1553-1565, 1973

    9. Muskhelishvili, N. I., Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen, 1953

    10. S. Torquato, T.M. Truskett & P.G. Debenedetti., Is random close packing of spheres well defined?, Physical Review Letters, Vol. 84, No.10, pp. 2064-2067, 2000

    11. T. Reiter, G. J. Dvorak and V. Tvergaard., Micromechanical models for graded composite materials, J. Mech. Phys. Solids, Vol. 45, No. 8, pp. 1281-1302, 1997

    12. Sokolnikoff I.S., Mathematical theory of elasticity, McGraw-Hill, New York, 1956

    13. Timoshenko, S. P. & Goodier, J. N., Theory of Elasticity. McGraw-Hill, New York, 1970

    下載圖示 校內:立即公開
    校外:2002-07-09公開
    QR CODE