簡易檢索 / 詳目顯示

研究生: 張意婕
Zhang, Yi-Jie
論文名稱: 利用3D列印金屬粉末摻合聚乳酸之複合材料製造金屬零件
Fabrication of Metallic Parts by 3D Printing Using Metallic Powder-Polylactide Composite Filament
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 127
中文關鍵詞: 3D列印金屬粉末聚乳酸複合材料燒結
外文關鍵詞: 3D printing, metal powder, polylactide, composite materials, sintering
相關次數: 點閱:141下載:32
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用銅粉末摻合聚乳酸(Polylactide,簡稱PLA)形成複合材料Copper Filamet™,利用3D列印機印製零件,再透過高溫燒結成金屬零件,以低成本的3D列印方法製造金屬零件,與利用純金屬粉末作為材料之3D列印方式不同。所使用之複合材料質量比例是90%的銅粉末和10%的聚乳酸組成(亦即體積比例為57%的銅和43%的聚乳酸)。研究中先進行3D的數值模擬,以了解此系統之熱傳特性。利用有限差分法求解能量守恆方程式來模擬加熱過程,並定義一個完成度來表示試片的熱裂解與燃燒反應的完成百分比。實驗過程分成兩大項,分別為表面形貌觀測與機械性質測量。觀察燒結前後之特性變化,並利用兩種燒結溫度曲線所得試片表面形貌與機械性質差異。機械性質量測,包括熱傳導係數、硬度、拉伸、磨耗、腐蝕等。可以得知,燒結為必要之過程,透過燒結去除聚乳酸,試片體積隨著原本試片大小等比例縮小,越大的試片收縮效果越顯著,所以零件製造精度受影響,但因體積縮小,使燒結試片的密度、強度和熱傳導係數可以提高至一定程度。整體而言,本製造方法可大幅度降低金屬零件的列印成本,但只能應用於不需要高精度的零件製造。

    In this research, copper powder is blended with polylactide (PLA) to form the composite material-Copper Filamet™. The parts are printed by using a 3D printer, and then sintered into metal parts in a high-temperature sintering furnace. The metal parts are manufactured by low-cost 3D printing methods. In the research, a 3D numerical simulation is performed to understand the heat transfer properties of the system. The experiment process is divided into two major parts, surface topography observation, and mechanical property measurement.

    摘要 I Abstract II 誌謝 VII 目錄 IX 表目錄 XII 圖目錄 XIII 符號索引 XVIII 第一章 前言 1 1.1 研究背景與動機 1 1.2 金屬粉末摻合聚乳酸(PLA) 3 1.3 文獻回顧 4 1.4 研究方向及目的 8 1.5 論文架構 9 第二章 理論模型 10 2.1 數學模式 10 2.2 完成度 13 第三章 實驗設備 16 3.1 試片製備 16 3.1.1 3D列印機 16 3.1.2 高溫燒結爐 17 3.2 測試設備 19 3.2.1 奈米壓痕試驗機-硬度量測 19 3.2.2 奈微拉伸試驗機-楊氏係數量測 20 3.2.3 萬能材料拉伸試驗機-楊氏係數量測 21 3.2.4 往復式磨耗試驗機-耐磨耗實驗 22 3.2.5 電化學分析儀-耐腐蝕實驗 24 3.2.6 雷射閃光熱傳導分析儀-熱傳導及熱擴散係數量測 26 3.2.7 高解析熱場發射掃描式電子顯微鏡-表面形貌 27 第四章 實驗量測過程 29 4.1 奈米壓痕試驗機-硬度量測 29 4.2 奈微拉伸試驗機-楊氏係數量測 30 4.3 萬能材料拉伸試驗機-楊氏係數量測 31 4.4 往復式磨耗試驗機-耐磨耗實驗 32 4.5 電化學分析儀-耐腐蝕實驗 33 4.6 雷射閃光熱傳導分析儀-熱傳導及熱擴散係數量測 34 4.7 掃描式電子顯微鏡-表面形貌 35 第五章 結果與討論 37 5.1 理論模型 37 5.2 表面形貌 38 5.3 硬度量測 39 5.4 楊氏係數 39 5.5 耐磨耗實驗 40 5.6 耐腐蝕實驗 41 5.7 熱傳導及熱擴散係數量測 41 第六章 結論 42 參考文獻 46

    [1] A. Gebhardt, Understanding Additive Manufacturing, 全華圖書股份有限公司, 2017.
    [2] 莊傳勝、黃偉欽、蔡宗汶、劉松河,“雷射金屬沉積(LMD)技術現況與發展趨勢,”雷射光谷推動促進網, 2016.
    [3] 常見3D列印技術比較及原理, 三帝瑪有限公司技術資料, 2020. https://3dmart.com.tw/news/comparing-fff-sla-and-sls-technologies
    (still available on Jan., 2021)
    [4] The Virtual Foundry公司主頁: https://www.thevirtualfoundry.com/
    (still available on Jan., 2021)
    [5] 李華嚴, 聚乳酸/聚碳酸酯合膠研究, 東海大學化學工程與材料工程研究所碩士論文, 2014.
    [6] Y. Ikada, H. Tsuji, “Biodegradable polyesters for medical and ecological applications,” Macromolecular Rapid Communications, Vol.21, pp.117-132, 2000.
    [7] 李國源, 生物可分解聚乳酸之特性、應用及分解, 大同大學生物工程研究所碩士論文, 2007.
    [8] 王剛、李愛民、李建豐,“基於 TG/FT-IR, Py-GC/MS 的聚乳酸
    塑料熱降解研究,”高校化學工程學報, Vol.23, pp.957-961, 2009。
    [9] J. Laureto, J. Tomasi, J. A. King, J. M. Pearce, “Thermal properties of 3-D printed polylactic acid-metal composites,”Prog Addit Manuf, Vol. 2, pp.57-71, 2017.
    [10] N.D. Ebrahimi and Y.S. Ju,“Thermal conductivity of sintered copper samples prepared using 3D printing-compatible polymer composite filaments,” Additive Manufacturing, Vol. 24, pp.479-485, 2018.
    [11] O.I. Ayeni, Sintering and Characterizations of 3D Printed Bronze Metal Filament, Master Thesis, Department of Mechanical and Energy Engineering, University of Purdue, Indianapolis, Indiana, 2018.
    [12] K. Pietrak, T.S. Wisniewski, “A review of models for effctive thermal conductivity of composite materials,” Journal of Power Technologies, Vol. 95 (1), pp.14-24, 2015.
    [13] R.C. Progelhof, J.L. Throne, R.R. Ruetsch,“Methods for Predicting the Thermal Conductivity of Composite Systems: A Review,” Polymer Engineering And Science, Vol. 16, No.9, pp.615-625, Sep., 1976.
    [14] J. Donea, “Thernial Conductivities Based on Variational Principles,”J. Composite Materials, Vol. 6, pp.262, Apr., 1972.
    [15] R. L. Hamilton, Thermal Conductivity of Heterogeneous Mixtures, PhD Thesis, Department of Chemical Engineering, University of Oklahoma, 1960.
    [16] L.E. Nielsen, “The Thermal and Electrical Conductivity of Two-Phase Systems,”Ind. Eng. Chem., Fundam, Vol. 13, No.1, pp.17-20, 1974.
    [17] Properties and characteristics of graphite for the semiconductor industry, Technical report, Entegris, Inc., May, 2013.
    [18] R. I. Vachon, A.G. Prakouras, R. Crane, and M.S. Khader, Thermal Conductivity of Heterogeneous Mixtures and Lunar Soils, Technical report, NASA (No.NAS8-26579), Oct., 1973.
    [19] Homepage of Engineering Toolbox Company: https://www.engineeringtoolbox.com (still available on Jan., 2021)
    [20] Specific Heat Capacity Table: http://www2.ucdsb.on.ca/tiss/stretton/database/Specific_Heat_Capacity_Table.html (still available on Jan., 2021)
    [21] J. Butt, R. Bhaskar,“Investigating the Effects of Annealing on the Mechanical Properties of FFF-Printed Thermoplastics,” Journal of Manufacturing and Materials Processing, Vol. 4 (2), 38,pp.1-20, 2020.
    [22] S. Hwang, E.I. Reyes, K.S. Moon, R.C. Rumpf, N.S. Kim, “Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process,” The Minerals, Metals & Materials Society, Vol.44, No.3, pp.771-777, 2014.
    [23] G. Kear, B.D. Barker, F.C. Walsh, “Electrochemical corrosion of unalloyed copper in chloride media-a critical review,” Corrosion Science, Vol. 46, pp.109-135, 2004.
    [24] R.L. Burden, D.J. Faires, A.M. Burden, Numerical analysis, 10th Ed., Singapore, Cengage Learning, 2016.
    [25] G.M. Pharr and W.C. Oliver, “Measurement of thin film mechanical properties using nanoindentation,”MRS Bulletin, Vol. 17, pp.28-33, 1992.
    [26] W.C. Oliver and G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Material Research, Vol. 7, pp.1564-1583, 1992.
    [27] ASTM Standard E8/E8M-09, Standard Test Methods for Tension Testing of Metallic Materials, ASTM.
    [28] 劉啟躍、王文健、何成剛, 摩擦學基礎與應用, 西南交通大學出版社, 成都, 2015.
    [29] 溫詩鑄、黃平,摩擦學原理(第三版),清華大學出版社, 北京, 2008.
    [30] E.P. Randviir, C.E. Banks, “Electrochemical impedance spectroscopy: an overview of bioanalytical applications,” Analytical Methods, Vol. 5, pp.1098-1115, 2013.
    [31] 黃進益(編譯), 電化學的原理及應用, 高立圖書有限公司, 1998.
    [32] 田福助(編譯), 電化學理論與應用, 高立圖書有限公司, 1990.
    [33] 胡啟章, 電化學原理與方法, 第二版, 五南圖書出版股份有限公司, 2019.
    [34] Basics of electrochemical impedance spectroscopy, Gamry Instruments, 2010.
    [35] E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy Theory:
    Experiment, and Applications, 2nd Ed., Wiley, New York, 2005.
    [36] Homepage of NETZSCH (still available on Jan., 2021)
    https://www.netzsch-thermal-analysis.com/en/products-solutions/thermal-diffusivity-conductivity/lfa-467-ht-hyperflash/
    [37] ASTM Standard E1461-13, Standard Test Method for Thermal Diffusivity by the Flash Method, ASTM.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE