研究生: |
張意婕 Zhang, Yi-Jie |
---|---|
論文名稱: |
利用3D列印金屬粉末摻合聚乳酸之複合材料製造金屬零件 Fabrication of Metallic Parts by 3D Printing Using Metallic Powder-Polylactide Composite Filament |
指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 127 |
中文關鍵詞: | 3D列印 、金屬粉末 、聚乳酸 、複合材料 、燒結 |
外文關鍵詞: | 3D printing, metal powder, polylactide, composite materials, sintering |
相關次數: | 點閱:141 下載:32 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用銅粉末摻合聚乳酸(Polylactide,簡稱PLA)形成複合材料Copper Filamet™,利用3D列印機印製零件,再透過高溫燒結成金屬零件,以低成本的3D列印方法製造金屬零件,與利用純金屬粉末作為材料之3D列印方式不同。所使用之複合材料質量比例是90%的銅粉末和10%的聚乳酸組成(亦即體積比例為57%的銅和43%的聚乳酸)。研究中先進行3D的數值模擬,以了解此系統之熱傳特性。利用有限差分法求解能量守恆方程式來模擬加熱過程,並定義一個完成度來表示試片的熱裂解與燃燒反應的完成百分比。實驗過程分成兩大項,分別為表面形貌觀測與機械性質測量。觀察燒結前後之特性變化,並利用兩種燒結溫度曲線所得試片表面形貌與機械性質差異。機械性質量測,包括熱傳導係數、硬度、拉伸、磨耗、腐蝕等。可以得知,燒結為必要之過程,透過燒結去除聚乳酸,試片體積隨著原本試片大小等比例縮小,越大的試片收縮效果越顯著,所以零件製造精度受影響,但因體積縮小,使燒結試片的密度、強度和熱傳導係數可以提高至一定程度。整體而言,本製造方法可大幅度降低金屬零件的列印成本,但只能應用於不需要高精度的零件製造。
In this research, copper powder is blended with polylactide (PLA) to form the composite material-Copper Filamet™. The parts are printed by using a 3D printer, and then sintered into metal parts in a high-temperature sintering furnace. The metal parts are manufactured by low-cost 3D printing methods. In the research, a 3D numerical simulation is performed to understand the heat transfer properties of the system. The experiment process is divided into two major parts, surface topography observation, and mechanical property measurement.
[1] A. Gebhardt, Understanding Additive Manufacturing, 全華圖書股份有限公司, 2017.
[2] 莊傳勝、黃偉欽、蔡宗汶、劉松河,“雷射金屬沉積(LMD)技術現況與發展趨勢,”雷射光谷推動促進網, 2016.
[3] 常見3D列印技術比較及原理, 三帝瑪有限公司技術資料, 2020. https://3dmart.com.tw/news/comparing-fff-sla-and-sls-technologies
(still available on Jan., 2021)
[4] The Virtual Foundry公司主頁: https://www.thevirtualfoundry.com/
(still available on Jan., 2021)
[5] 李華嚴, 聚乳酸/聚碳酸酯合膠研究, 東海大學化學工程與材料工程研究所碩士論文, 2014.
[6] Y. Ikada, H. Tsuji, “Biodegradable polyesters for medical and ecological applications,” Macromolecular Rapid Communications, Vol.21, pp.117-132, 2000.
[7] 李國源, 生物可分解聚乳酸之特性、應用及分解, 大同大學生物工程研究所碩士論文, 2007.
[8] 王剛、李愛民、李建豐,“基於 TG/FT-IR, Py-GC/MS 的聚乳酸
塑料熱降解研究,”高校化學工程學報, Vol.23, pp.957-961, 2009。
[9] J. Laureto, J. Tomasi, J. A. King, J. M. Pearce, “Thermal properties of 3-D printed polylactic acid-metal composites,”Prog Addit Manuf, Vol. 2, pp.57-71, 2017.
[10] N.D. Ebrahimi and Y.S. Ju,“Thermal conductivity of sintered copper samples prepared using 3D printing-compatible polymer composite filaments,” Additive Manufacturing, Vol. 24, pp.479-485, 2018.
[11] O.I. Ayeni, Sintering and Characterizations of 3D Printed Bronze Metal Filament, Master Thesis, Department of Mechanical and Energy Engineering, University of Purdue, Indianapolis, Indiana, 2018.
[12] K. Pietrak, T.S. Wisniewski, “A review of models for effctive thermal conductivity of composite materials,” Journal of Power Technologies, Vol. 95 (1), pp.14-24, 2015.
[13] R.C. Progelhof, J.L. Throne, R.R. Ruetsch,“Methods for Predicting the Thermal Conductivity of Composite Systems: A Review,” Polymer Engineering And Science, Vol. 16, No.9, pp.615-625, Sep., 1976.
[14] J. Donea, “Thernial Conductivities Based on Variational Principles,”J. Composite Materials, Vol. 6, pp.262, Apr., 1972.
[15] R. L. Hamilton, Thermal Conductivity of Heterogeneous Mixtures, PhD Thesis, Department of Chemical Engineering, University of Oklahoma, 1960.
[16] L.E. Nielsen, “The Thermal and Electrical Conductivity of Two-Phase Systems,”Ind. Eng. Chem., Fundam, Vol. 13, No.1, pp.17-20, 1974.
[17] Properties and characteristics of graphite for the semiconductor industry, Technical report, Entegris, Inc., May, 2013.
[18] R. I. Vachon, A.G. Prakouras, R. Crane, and M.S. Khader, Thermal Conductivity of Heterogeneous Mixtures and Lunar Soils, Technical report, NASA (No.NAS8-26579), Oct., 1973.
[19] Homepage of Engineering Toolbox Company: https://www.engineeringtoolbox.com (still available on Jan., 2021)
[20] Specific Heat Capacity Table: http://www2.ucdsb.on.ca/tiss/stretton/database/Specific_Heat_Capacity_Table.html (still available on Jan., 2021)
[21] J. Butt, R. Bhaskar,“Investigating the Effects of Annealing on the Mechanical Properties of FFF-Printed Thermoplastics,” Journal of Manufacturing and Materials Processing, Vol. 4 (2), 38,pp.1-20, 2020.
[22] S. Hwang, E.I. Reyes, K.S. Moon, R.C. Rumpf, N.S. Kim, “Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process,” The Minerals, Metals & Materials Society, Vol.44, No.3, pp.771-777, 2014.
[23] G. Kear, B.D. Barker, F.C. Walsh, “Electrochemical corrosion of unalloyed copper in chloride media-a critical review,” Corrosion Science, Vol. 46, pp.109-135, 2004.
[24] R.L. Burden, D.J. Faires, A.M. Burden, Numerical analysis, 10th Ed., Singapore, Cengage Learning, 2016.
[25] G.M. Pharr and W.C. Oliver, “Measurement of thin film mechanical properties using nanoindentation,”MRS Bulletin, Vol. 17, pp.28-33, 1992.
[26] W.C. Oliver and G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Material Research, Vol. 7, pp.1564-1583, 1992.
[27] ASTM Standard E8/E8M-09, Standard Test Methods for Tension Testing of Metallic Materials, ASTM.
[28] 劉啟躍、王文健、何成剛, 摩擦學基礎與應用, 西南交通大學出版社, 成都, 2015.
[29] 溫詩鑄、黃平,摩擦學原理(第三版),清華大學出版社, 北京, 2008.
[30] E.P. Randviir, C.E. Banks, “Electrochemical impedance spectroscopy: an overview of bioanalytical applications,” Analytical Methods, Vol. 5, pp.1098-1115, 2013.
[31] 黃進益(編譯), 電化學的原理及應用, 高立圖書有限公司, 1998.
[32] 田福助(編譯), 電化學理論與應用, 高立圖書有限公司, 1990.
[33] 胡啟章, 電化學原理與方法, 第二版, 五南圖書出版股份有限公司, 2019.
[34] Basics of electrochemical impedance spectroscopy, Gamry Instruments, 2010.
[35] E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy Theory:
Experiment, and Applications, 2nd Ed., Wiley, New York, 2005.
[36] Homepage of NETZSCH (still available on Jan., 2021)
https://www.netzsch-thermal-analysis.com/en/products-solutions/thermal-diffusivity-conductivity/lfa-467-ht-hyperflash/
[37] ASTM Standard E1461-13, Standard Test Method for Thermal Diffusivity by the Flash Method, ASTM.