簡易檢索 / 詳目顯示

研究生: 張中英
Chang, Chung-Ying
論文名稱: 高效率氮化鎵LED之製作及特性探討
Investigation and Fabrication of High Efficiency Nitride Based LED Devices
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 89
中文關鍵詞: 氮化鎵發光二極體圖案化基板氮化鋁緩衝層缺陷選擇性蝕刻薄障壁鋁電致遷移
外文關鍵詞: GaN, LED, PSS, AlN, Buffer Layer, Defect Selective Etching, Thin Barrier, Al Electro-migration
相關次數: 點閱:132下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要以磊晶及製程之改變來提升LED的發光效率,同時對高電流操作所導致的效率下降以及溫度升高時對LED效率之影響做一討論,其中也針對LED可靠度驗證時,發現可能的失效模式,提出我們的實驗結果供大家在設計LED時之參考。
    在我們研究中,在一般基板上成長表面粗化結構,在已經是最佳化的磊晶結構中,我們發現將極高的Si濃度,>1019 #/cm3,參雜在特定區域,N layer進入 strain releasing layer以及strain releasing layer與發光層之間,對LED的電氣特性會產生極大的變化,可提升數倍逆向偏壓的能力,同時也助於輸出power增加。
    先前有研究指出:利用高溫蝕刻去除雷射切割所造成的殘留物,以及缺陷選擇性蝕刻,可造成晶粒外圍形成倒角,提升光萃取的效益,當時的研究是在一般平的基板下進行。我們則在圖案化基板上進行相關的實驗,我們發現磊晶薄膜品質大為提升,將會導致缺陷選擇性蝕刻方法失效,故我們經由不同的緩衝層成長,刻意造成底層的品質差異,而可以進行缺陷選擇性蝕刻方法。在我們的實驗中,使用高溫AlN buffer的LED抗蝕刻能力略弱於低溫 GaN緩衝層,在蝕刻液溫度250 ℃時,浸泡10分鐘後,使用高溫AlN buffer的LED 其mesa呈倒角狀,同時部分GaN層被蝕去導致部分基板區裸露,其上的PSS形狀仍然存在,這一組樣品在高電流操作下輸出power有12%提升。
    此外我們也評估barrier厚度對LEDs操作在高電流密度時效率的影響。習知的研究多集中在電子傳輸機制的探討。我們則藉由模擬的結果發現:barrier厚度減薄,有助於Hole載子在多重發光量子井中的分布更均勻,進而提升LEDs在高電流注入時的效率。
    我們針對變化barrier厚度設計幾組實驗。我們的實驗結果顯示:barrier的厚度愈薄,其在高電流密度操作時的效率也愈好,但是同時也發現在低電流密度區操作時,發光效率會下降,推測是低電流操作時,發光較集中在靠近P layer的發光層在主導,Barrier減薄作法,會使hole分布改變,如前所述,所以影響低電流密度時發光效率。
    我們也針對LED操作在不同電流密度時的 Hot-Cold Factor影響的因素做一討論。我們實驗中設計了不同的electron blocking layer, EBL,厚度及last barrier, LB,厚度對Hot-Cold Factor的影響做探討。實驗結果顯示兩者都有重要的影響,但是我們也發現EBL厚度增加的效果有限,LB厚度的變化對Hot-Cold Factor更為顯著,在其中一組LB厚度增加為6倍的實驗中,在120 mA正常操作電流時,我們得到Hot-Cold Factor 1.049,在兩倍電流操作時仍維持卓越的Hot-Cold Factor特性。所以我們認為可以透過結構設計而使Hot-Cold Factor獲得改良。
    在LED製程中,我們發現為了提升亮度而減少傳輸線寬,以及在覆蓋金屬例如Fingers及Pads下放置反射層,已是常用的手法。而Al是常被用來當作反射層的材料之一。我們研究發現在極端的可靠度測試環境下, 80℃, 125 A/cm2,在特定的位置會有Al的析出,我們認為其為Al電致遷移現象,這點在LED的失效機制中尚未被接露,可供後續者在設計LED layout時參考。

    In the dissertation we approached the high efficiency LED via both epitaxy growth and chip process. Meanwhile we investigated the efficiency drop of LED at high current injection and the influence on LED output power while raising temperature. And then during the aging experiment, we found a potential failure mode for LED chip. We proposed out our experiment results for reference in the design of LED chip.
    In our study, introducing Si delta-doping (Si-DD) layers on specified positions, the interface of N layer and the first strain releasing multiple quantum wells, the interface of the first strain releasing multiple quantum wells and the second strain releasing multiple quantum wells, based on a well optimized LED grown on a planar substrate can greatly change the LED electric characteristics, many times improvement of reverse bias was observed, and improve the output power.
    Paper research told us that remove the laser debris by high temperature solution and introducing the defect selective etching can result in truncate sidewalls surrounded the chip mesa to improve the extraction efficiency. The author experimented with it on a standard sapphire substrate. Instead of standard substrate, we applied the defect selective etching on LEDs grown on the pattern sapphire substrate, PSS. We found the great improvement of film quality due to grow on PSS causes the failure of defect selective etching. So we intended to make the buffer a little inferior via a high temperature AlN layer as the buffer layer to enable the defect selective etching.
    Our experiment indicated that LEDs with HT AlN as buffer has a little poor ability against high temperature etching than LEDs with LT GaN as buffer. Undercut sidewalls of mesa for LEDs with high temperature AlN buffer layer, HT AlN, were seen after dipping them in 250℃ H3PO4 solution for 10 minutes. The change of mesa shape and the uncovered pattern sapphire cones play as the media to lead out more light from the chip. Our data indicated a 12% output power enhancement at one ampere operation.
    Besides, we also investigate the influence of varying the barrier thickness on the efficiency of nitride LED operating at high current density. The existing studies used to focus on the discussion of electron transportation. With a simulation result, the holes distribution within the multiple quantum wells might play more important role at high current injection. We designed experiments with different barrier thickness. Our experiment results suggest thinner the barrier, better the efficiency at high current injection. However, it’s trade-off the lower efficiency at lower current density. We thought the change of holes distribution in multiple quantum wells leads the efficiency poor at lower current density.
    We also discussed on the mechanism of Hot-Cold Factor for LEDs running at different current density. Different electron blocking layer thickness and different last barrier thickness were designed for our experiment. The experimental results suggest both electron blocking layer and last barrier have significant influence on Hot-Cold Factor. And we found a finite effect of EBL thickness to Hot-Cold Factor. Instead, our data suggest more significant effect the last barrier thickness is. An extreme case the sample with six times LB thickness delivered a very superior Hot-Cold Factor, the values is 1.049 at 120 mA. In additions, samples with thicker LB also keep such advantage at two times current density. Our result indicated an improvement on Hot-Cold Factor can be achieved via design of LED structure.
    Narrowing the metal finger width and using a reflector structure under metal fingers and pads were used to increase output power in the fabrication of LED chip. And Al has been demonstrated as one of the best candidates for the reflector. In our study, we found both measures may cause failure due to the Al electro-migration under tough aging condition such as 80℃, 125 A/cm2. We found the Al whiskers emerge out usually at certain position of metal fingers. The whisker length will increase with aging time. Eventually the whiskers touch other parts of chip leading the chip short. Al migration such as a failure mechanism that has to be taken into account in the design of HV-LEDs.

    Abstract (Chinese) ………………………………………………………I Abstract (English) ……………………………………………………III Acknowledgement………………………………………………………………VII Contents…………………………………………………………………………………VIII Table Captions……………………………………………………………………X Figure Captions…………………………………………………………………XI Chapter 1 Introduction…………………………………………………………………………1 1.1 Background……………………………………………………………………1 1.2 Overview of the Dissertation……………………4 Chapter 2 GaN-based LEDs with double strain releasing MQWs and Si delta doping layers…………………………7 2.1 Introduction……………………………………………………………7 2.2 Experiments…………………………………………………………………8 2.3 Results and Discussion……………………………………11 2.4 Summary……………………………………………………………………………13 Chapter 3 GaN-based LEDs with a HT-AlN nucleation layer prepared on patterned sapphire substrate…20 3.1 Introduction………………………………………………………………20 3.2 Experiments…………………………………………………………………21 3.3 Results and Discussion……………………………………23 3.4 Summary……………………………………………………………………………27 Chapter 4 GaN-based LED with Thin Barrier…………………………34 4.1 Introduction………………………………………………………………34 4.2 Experiments.………………………………………………………………35 4.3 Results and Discussion……………………………………37 4.4 Summary……………………………………………………………………………41 Chapter 5 Hot-Cold Factor Improvement for GaN-based LED……………………………………………………………………………………………………46 5.1 Introduction………………………………………………………………46 5.2 Experiments.………………………………………………………………47 5.3 Results and Discussion……………………………………49 5.4 Summary……………………………………………………………………………53 Chapter 6 Failure Mechanism for GaN-based High-Voltage LED……………………………………………………………………………………………………61 6.1 Introduction………………………………………………………………61 6.2 Experiments.………………………………………………………………62 6.3 Results and Discussion……………………………………64 6.4 Summary……………………………………………………………………………68 Chapter 7 Conclusion and Future works……………………………………76 7.1 Conclusion ……………………………………………………………………76 7.2 Future works…………………………………………………………………77 References…………………………………………………………………………………79 Publication list…………………………………………………………………89

    [1] S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes”, Appl. Phys. Lett., Vol. 67, no. 13, pp. 1868-1870, 1995.
    [2] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, "InGaN/GaN multiple quantum well blue and green light emitting diodes", IEEE J. Sel. Topics Quantum Electron., Vol. 8, no. 2, pp. 278-283, Mar./Apr. 2002.
    [3] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates”, IEEE Photon. Technol. Lett., Vol. 18, no. 10, pp. 1152-1154, May 15, 2006.
    [4] S. J. Chang, C. F. Shen, W. S. Chen, C. T. Kuo, T. K. Ko, S. C. Shei and J. K. Sheu, "Nitride-based light emitting diodes with indium tin oxide electrode patterned by imprint lithography", Appl. Phys. Lett., Vol. 91, no. 1, pp. 013504-1-013504-3, 2007.
    [5] Chung-Ying Chang, Shoou-Jinn Chang, Senior Member, IEEE, C. H. Liu, Shuguang Li, and T. K. Lin, “GaN-based LEDs With double Strain Releasing MQWs and Si Delta-Doping Layers”, IEEE Photon. Technol. Lett., Vol. 24, no. 20, pp. 1809–1811, 2012.
    [6] S. J. Chang, S. C. Wei, Y. K. Su, and W. C. Lai, “Nitride-based dual-stage MQW LEDs,” J. Electrochem. Soc., vol. 154, no. 10, pp. H871–H874, 2007.
    [7] Y. B. Pan, Z. J. Yang, Z. T. Chen, Y. Lu, T. J. Yu, X. D. Hu, K. Xu and G.Y. Zhang, "Reduction of threading edge dislocation density in n-type GaN by Si delta-doping", J. Crystal Growth, Vol. 286, no. 2, pp. 255-258, 2006.
    [8] Z. Y. Zheng, Z. M. Chen, Y. L. Xian, B. F. Fan, S. J. Huang, W. Q. Jia, Z. S. Wu, G. Wang and H. Jiang, "Enhanced electrostatic discharge properties of nitride-based light-emitting diodes with inserting Si-delta-doped layers", Appl. Phys. Lett., Vol. 99, no. 11, pp. 111109-1-111109-3, 2011.
    [9] M. K. Kwon, I. K. Park, S. H. Baek, J. Y Kim and S. J. Park, "Si delta doping in a GaN barrier layer of InGaN/GaN multiple quantum well for an efficient ultraviolet light-emitting diode", J. Appl. Phys., Vol. 97, no. 10, pp. 106109-1-106109-3, 2005.
    [10] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin and J. C. Ke, "Highly reliable nitride based LEDs with SPS+ITO upper contacts", IEEE J. Quantum Electron, Vol. 39, no. 11, pp. 1439-1443, Nov, 2003.
    [11] S. R. Jeon, M. S. Cho, T. V. Hung, M A. Yu, and G. M. Yang, “Reduction of operation voltage in GaN-based light-emitting diode utilizing a Si δ-doped n-GaN contact layer", Jpn. J. Appl. Phys. Lett., Vol. 41, no. 7A, pp. L761-L764, 2002.
    [12] O. Contreras, F. A. Ponce, J. Christen, A. Dadgar and A. Krost, “Dislocation annihilation by silicon delta-doping in GaN epitaxy on Si”, Appl. Phys. Lett., Vol. 81, no. 25, pp. 4712-4714, 2002.
    [13] Chung-Ying Chang, Shoou-Jinn Chang, Senior Member, IEEE, C. H. Liu, Shuguang Li, and Evan Chen, “GaN-based LEDs With an HT-AlN Nucleation Layer Prepared on Patterned Sapphire Substrate”, IEEE Photon. Technol. Lett., Vol. 25, no. 1, pp. 88–90, 2013.
    [14] C. S. Chang, S. J. Chang, Y. K. Su, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke and H. M. Lo, “Nitride-based LEDs with textured side walls”, IEEE Photon. Technol. Lett., Vol. 16, no. 3, pp. 750-752, Mar. 2004
    [15] D. S. Kuo, S.J. Chang, T. K. Ko, C.F. Shen, S. J. Hon, and S. C. Hung, "Nitride-based LEDs with phosphoric acid etched undercut sidewall", IEEE Photon. Technol. Lett., Vol. 21, no. 8, pp. 510-512, Apr. 15, 2009.
    [16] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu and N. Sawaki, "Effects of AlN buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1−xAlxN (0 < x ≤ 0.4) films grown on sapphire substrate by MOVPE", J. Crystal Growth, Vol. 98, nos. 1-2, pp. 209-219, 1989.
    [17] X. H. Wu, D. Kapolnek, E. J. Tarsa, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. Denbaars and J. S. Speck, "Nucleation layer evolution in metalorganic chemical vapor deposition grown GaN", Appl. Phys. Lett., Vol. 68, no. 10, pp. 1371-1373, 1996.
    [18] S. J. Chang, et al., “Nitride-based LEDs with p-InGaN capping layer”, IEEE Trans. Electron. Devices, Vol. 50, no. 12, pp. 2567-2570, Dec. 2003.
    [19] S. J. Chang, D. S. Kuo, K. T. Lam, K. H. Wen, T. K. Ko and S. J. Hon, "GaN-based LEDs with sapphire debris removed by phosphoric etching", IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 2, no. 2, pp. 349-353, Feb. 2012.
    [20] Richard Stevenson; Compound Semiconductor magazine, 2009.
    [21] Taiwan, June 19-20, 2012 6th Taiwan Solid State Lighting - tSSL 2012.
    [22] Min-Ho Kim, Martin F. Schubert, Qi Dai, Jong Kyu Kim, and E. Fred Schubert "Origin of efficiency droop in GaN based light-emitting diodes", APL, 91, pp.183507, 2007.
    [23] Y.-L. Li, Y.-R. Huang, and Y.-H. Lai “ Efficiency droop behaviors of InGaN/Gan multiple-quantum-well light-emitting diodes with varying quantum well thickness", Appl. Phys. Lett., Vol. 91, pp. 181113, 2007.
    [24] Karmes, Appl. Phys. Lett., Vol. 91, pp. 141101, 2007.
    [25] S. Yoshida, S. Misawa, S. Gonda, Appl. Phys. Lett., Vol. 42, pp. 427, 1983
    [26] S. F. Yu, Ray-Ming Lin, S.J. Chang, Senior member, IEEE, J.R. Chen, J.Y. Chu, C.T. Kuo, and Z.Y. Jiao, Journal of display Technology, Vol. 9, NO, 4, April 2013.
    [27] M. H. Kim, M. F. Schubert, Q. Dai, J. M. Kim, E. F. Schubert, J. Piprek and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes”, Appl. Phys. Lett., vol. 91, pp. 183507, 2007.
    [28] Richard Stevenson; Compound Semiconductor magazine, 2009.
    [29] S.M. SZE; “SEMICONDUCTOR DEVICES Physics and Technology”, Wiley,
    [30] V. Yu. DAVYDOV, A. A. KLOCHIKHIN, V. V. EMTSEV, D. A. KURDYUKOV, S. V. IVANOV, V. A. VEKSHIN, F. BECHSTEDT, J. FURTHMULLER, J. ADERHOLD, J. GRAUL, A. V. MUDRYI, H. HARIMA, A. HASHIMOTO, A. YAMAMOTO, and E. E. HALLER, “Band Gap of Hexagonal InN and InGaN Alloys”, phys. stat. sol. (b) 234, No. 3, 787–795 (2002)
    [31] K. L. Teo, J. S. Colton, and P. Y. Yu, E. R. Weber, M. F. Li, W. Liu, K. Uchida, H. Tokunaga, N. Akutsu, and K. Matsumoto, “An analysis of temperature dependent photoluminescence line shapes in InGaN”, Appl. Phys. Lett., Vol. 73, 1967 , 1998
    [32] David S. Meyaard, Qifeng Shan, Qi Dai, Jaehee Cho, E. Fred Schubert, Min-Ho Kim, and Cheolsoo Sone, “On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes”, Appl. Phys. Lett., Vol. 99, 041112 , 2011
    [33] Shoou-Jinn Chang, Fellow, IEEE, Chung-Ying Chang, Chun-Lung Tseng, Ching-Shing Shen, and Bing-Yang Chen, “Failure Mechanism for GaN-Based High-Voltage Light-Emitting Diodes”, IEEE Photon. Technol. Lett., Vol. 26, no. 11, pp. 1073–1076, 2014.
    [34] H. H. Yen, W. Y. Yeh and H. C. Kuo, "GaN alternating current light-emitting device", Physica Status Solidi A, vol. 204, no. 6, pp. 2077-2081, 2007.
    [35] H. H. Yen, H. C. Kuo and W. Y. Yeh, "Particular failure mechanism of GaN-based alternating current light-emitting diode induced by GaOx oxidation", IEEE Photon. Technol. Lett., vol. 22, no. 15, pp. 1168-1170, Aug. 1, 2010.
    [36] H. M. Chang, W. C. Lai and S. J. Chang, "Effects of initial GaN growth mode on patterned sapphire on the opto-electrical characteristics of GaN-based light-emitting diodes", IEEE/OSA J. Display Technol., vol. 9, no. 4, pp. 292-296, 2013.
    [37] C. F. Shen, S. J. Chang, W. S. Chen, T. K. Ko, C. T. Kuo and S. C. Shei, "Nitride-based high-power flip-chip LED with double-side patterned sapphire substrate", IEEE Photon. Technol. Lett., vol. 19, no. 10, pp. 780-782, May 15, 2007.
    [38] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin and J. C. Ke, "Highly reliable nitride based LEDs with SPS+ITO upper contacts", IEEE J. Quantum Electron., vol. 39, no. 11, pp. 1439-1443, Nov., 2003.
    [39] C. H. Wang, D. W. Lin, C. Y. Lee, M. A. Tsai, G. L. Chen, H. T. Kuo, W. H. Hsu, H. C. Kuo, T. C. Lu, S. C. Wang and G. C. Chi, ”Efficiency and droop improvement in GaN-based high-voltage light-emitting diodes”, IEEE Electron Dev. Lett., vol. 32, no. 8, pp. 1098-1100, Aug., 2011.
    [40] R. H. Horng, K. C. Shen, Y. W. Kuo and D. S. Wuu, ”Effects of cell distance on the performance of GaN high-voltage light-emitting diodes”, ECS Solid State Lett., vol. 1, no. 5, pp. R21-R23, 2012.
    [41] I. Blech, "Electromigration in thin aluminum films on titanium nitride", J. Appl. Phys., vol 47, no. 4, pp. 1203-1208, 1976.
    [42] T. Wada, H. Higuchi and T. Ajiki, ”Electromigration in double-layer metallization”, IEEE Trans. Reliability, vol. 34, no. 1, pp. 2-7, Apr., 1985.
    [43] S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen and C. H. Liu, "Nitride-based LEDs fabricated on patterned sapphire substrates", Solid State Electron., Vol. 47, no. 9, pp. 1539-1542, 2003
    [44] K. Tadatomo, H. Okagawa, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo and T. Taguchi, "High output power InGaN ultraviolet light emitting diodes fabricated on patterned substrates using metalorganic chemical vapor deposition", Phys. Stat. Sol. (a), Vol. 188, no. 1, pp. 121-125, 2001.
    [45] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, "400nm InGaN/GaN and InGaN/AlGaN multiple quantum well light-emitting diodes", IEEE J. Sel. Top. Quantum Electron., Vol. 8, no. 4, pp. 744-748, Jul./Aug., 2002.
    [46] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin and J. C. Ke, "Highly reliable nitride based LEDs with SPS+ITO upper contacts", IEEE J. Quan. Electron., Vol. 39, no. 11, pp. 1439-1443, Nov., 2003
    [47] Richard Stevenson; Compound Semiconductor magazine, 2009.
    [48] June 19-20, 2012 6th Taiwan Solid State Lighting - tSSL 2012
    [49] Min-Ho Kim, Martin F. Schubert, Qi Dai, Jong Kyu Kim, and E. Fred Schubert "Origin of efficiency droop in GaN based light-emitting diodes", Appl. Phys. Lett., Vol. 91, no. 18, pp.183507, 2007.
    [50] Yun-Li Li, Member, IEEE, Yi-Ru Huang, and Yu-Hung Lai, "Efficiency droop behaviors of InGaN/Gan multiple-quantum-well light-emitting diodes with varying quantum well thickness", IEEE Journal of Selected Topics in Quantum Electronics, Vol. 15, no. 4, pp. 1128, July/Aug., 2009.
    [51] S. F. Yu, Ray-Ming Lin, S.J. Chang, Senior member, IEEE, J.R. Chen, J.Y. Chu, C.T. Kuo, and Z.Y. Jiao, "Improved Carrier Distributions by Varying Barrier Thickness for InGaN/GaN LEDs" Journal of display Technology, Vol. 9, NO, 4, April 2013.
    [52] S.M. SZE “SEMICONDUCTOR DEVICES Physics and Technology”
    [53] V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, et al., "Band Gap of Hexagonal InN and InGaN Alloys", phys. stat. sol. (b) 234, No. 3, 787–795 (2002)
    [54] K. L. Teo, J. S. Colton, and P. Y. Yu, E.R. Weber, M. F. Li and W. Liu, K. Uchida, H. Tokunaga, N. Akutsu, and K. Matsumoto, "An analysis of temperature dependent photoluminescence line shapes in InGaN", Appl. Phys. Lett., Vol. 73, no. 12, pp.1697- 1699 , Sep., 1998.
    [55] David S. Meyaard, Qifeng Shan, Qi Dai, Jaehee Cho, E. Fred Schubert, Min-Ho Kim, and Cheolsoo Sone, "On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes", Appl. Phys. Lett., Vol. 99, pp. 041112 , 2011.
    [56] C. M. Tsai, J. K. Sheu, W. C. Lai, Y. P. Hsu, P. T. Wang, C. T. Kuo, C.W.Kuo, S. J. Chang, and Y. K. Su, ”Enhanced output power in GaN-based LEDs with naturally textured surface grown by MOCVD”, IEEE Electron Dev. Lett., vol. 26, pp. 464-466, 2005.
    [57] S. J. Chang, C. H. Chen, Y. K. Su, J. K. Sheu. W. C. Lai, J. M. Tsai, C. H. Liu and S. C. Chen, ”Improved ESD protection by combining InGaN-GaN MQW LEDs with GaN Schottky diodes” , IEEE Electron Dev. Lett., vol. 24, pp. 129-131, 2003.

    下載圖示 校內:2016-08-20公開
    校外:2016-08-20公開
    QR CODE