簡易檢索 / 詳目顯示

研究生: 林逸歆
Lin, Yi-Hsin
論文名稱: 以非晶質SiO2伴隨之AlVI至AlIV配位數轉移現象改變堇青石生成途徑之研究
Reaction routes alteration in cordierite synthesis conducted by AlVI to AlIV transition accompanied with the amorphized SiO2
指導教授: 向性一
Hsiang, Hsing-I
共同指導教授: 顏富士
Yen, Fu-Su
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 141
中文關鍵詞: 固態合成堇青石非晶質SiO2AlIV堇青石合成路徑
外文關鍵詞: solid-state method, cordierite, amorphous SiO2, AlIV(Si-O-AlIV)
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以高能研磨Talc-Al2O3-SiO2原料系統(TAS)證明製造非晶質SiO2環境可造成AlVI的生成。以此原理在Talc-Al2O3-Kaolinite原料系統(TAK)合成α-Cordierite過程,藉外加堇青石粉末於原料粉末中,造成高非晶質SiO2環境於α-Cordierite生成溫度區間發生,使對應出現的AlIV直接接近同步合成α-Cordierite。達成簡化固態反應合成堇青石的路徑。也使合成溫度從以往的1350℃降低至1250℃。
    堇青石屬環狀矽酸鹽礦物。基礎結構是鋁氧及矽氧四面體組成的六連環。工業上常用的固態反應法,因固體間的擴散距離相對較遠且均勻度較差,堇青石的合成路徑複雜,導致熱處理溫度高,提高了合成的難度和成本,同時對堇青石產品的性質產生了一定的影響。根據溶膠凝膠法合成堇青石的操作程序,可知堇青石的生成需要先形成Si-O-AlIV鍵結,再出現四面體組成的六連環。因此由TEOS和含Al前驅物反應先引發Si-O-AlIV,可以使α-Cordierite於低溫合成。
    四面體的Al-O鍵結長度為1.76~1.77Å,因此可以取代Si4+(Si-O鍵結長度最長為1.77 Å)。Si-O-AlIV結構在自然界常見於造岩礦物的矽酸鹽礦物,如單鏈矽酸鹽的普通輝石(Augite)、片狀矽酸鹽的黑雲母(Biotite)、架狀矽酸鹽的長石(Feldspar)等。此外在環狀矽酸鹽也會出現,如堇青石(Cordierite)、大隅石(Osumilite)。環狀矽酸鹽礦物的生成和氣成(Pneumatolytic)礦物有關,大多和偉晶岩共生。也會在流紋岩中生成。綜觀來說,環狀矽酸鹽或AlIV的生成條件為高流動性或玻璃質環境,可利用高水含量或是固態中相對容易移動(擴散)的玻璃質來促進離子遷移生成環狀矽酸鹽礦物相。在Al2O3-SiO2溶液或玻璃中,Al3+主要為四或五配位,但在Al2O3比例較高的玻璃中會由五配位、六配位的Al進行電荷補償。文獻分析在SiO2-Al2O3玻璃中,存在Si,Al-O四面體網絡,氧原子出現在Si-O-AlV、Si-O-AlIV、Si-O-Si鍵結中。因此創造高溫及流動性高的非晶質/玻璃質SiO2環境,即有機會使AlIV生成,製造鋁矽六連環。
    本研究利用高能研磨將TAS原料系統進行研磨,使原料非晶質化,讓其中的SiO2也轉為非晶質相,證明非晶質SiO2環境可以造成AlIV(-O-Si)出現,並製造六連環。結果顯示AlIV和Amorphized SiO2濃度呈正相關,且隨研磨時間增加,單位Amorphized SiO2造成的AlIV(Si-O-AlIV)增加,[IV]Al使用率增加。高能研磨製造出的高濃度AlIV(Si-O-AlIV)粉末原料,可於低溫製造六連環礦物Mg-Osumilite,證明AlIV(Si-O-AlIV)可製造六連環。然而因在低溫即存在 AlIV,使六連環礦物Mg-Osumilite於低溫先出現,再和Spinel反應生成α-Cordierite,所以仍須兩步驟才能生成堇青石。
    利用上述原理,直接在α-Cordierite生成溫度區間製造高非晶質SiO2環境,幫助AlIV大量生成,則有機會簡化TAK系統合成堇青石的路徑。TAK系統本身即可由滑石及高嶺石提供足量的非晶質SiO2。利用外加堇青石降低Al2O3對滑石的反應濃度,並阻礙Al2O3的擴散,可強制延後第一階段於低溫發生的氧化鋁與Enstatite的反應延至α-Cordierite生成溫度區間發生。外加堇青石量使滑石表面分配到的成分Al2O3減少2.70%以上,可將第一階段反應由1050℃延後至1200℃,和第二階段的Mullite 與Enstatite反應同步發生。使滑石與高嶺石釋出的非晶質SiO2在α-Cordierite生成區間同時存在,幫助AlVI至AlIV(Si-O-AlIV)的轉移在此溫度區間發生,則可直接生成α-Cordierite。在1250℃熱處理10分鐘直接合成α-Cordierite。
    本研究證明利用高能研磨TAS(滑石-氧化鋁-氧化矽)原料系統製造非晶質SiO2有助於AlVI至AlIV(Si-O-AlIV)的轉移,製造六連環。在滑石-氧化鋁-氧化矽 (TAK)原料系統中外加堇青石,利用上述原理,在α-Cordierite生成溫度區間製造高非晶質SiO2濃度,幫助AlIV生成,直接合成α-Cordierite。達到簡化堇青石合成路徑,減少中間相殘留的目的,有助於提高堇青石的粉末純度。合成溫度較以往的低100℃(自1350℃降至1250℃)。此研究成果為工業界降低堇青石合成溫度並實現純相堇青石的製備,提供了另一重要的方向。

    This study focuses on the synthesis of α-cordierite using common solid-state reaction raw material systems: talc-alumina-silica (TAS) and talc-alumina-kaolinite (TAK), which provide a basis for creating an amorphous SiO2 environment. It has been demonstrated that amorphous SiO2 can induce the transition of AlVI to AlIV(Si-O-AlIV) and trigger this transformation within the α-cordierite formation range, resulting in direct α-cordierite phase synthesis. This simplifies the synthesis pathway, reduces intermediate phase residues, and lowers the synthesis temperature from the previous 1350°C to 1250°C.
    According to sol-gel methods, the formation of Si-O-AlIV bonds is a prerequisite for α-cordierite formation.
    Through high-energy milling of the TAS system, this study confirms that amorphous SiO2 can induce AlIV(Si-O-AlIV) formation, thereby constructing hexagonal rings. Employing the aforementioned principle, the action of generating AlIVfrom amorphous SiO2 is shifted to the α-cordierite formation temperature range, achieving a simplified synthesis pathway. By incorporating additional cordierite in the TAK system, the diffusion of Al2O3 is hindered, delaying the first-stage reaction to coincide with the second stage. This allows the amorphous SiO2 released by talc and kaolinite to induce AlIV(Si-O-AlIV) formation, enabling the direct production of high-temperature α-cordierite. α-cordierite can be synthesized directly at 1250°C for 10 minutes, achieving the aim of streamlining the cordierite synthesis pathway and lowering synthesis temperatures.

    摘要 I 誌謝 X 目錄 XII 圖目錄 XIV 表目錄 XVIII 第一章 緒論 1 1.1 堇青石應用及市場 1 1.2 工業上合成堇青石的限制 2 1.3 固態反應法的Al、Si成分反應 2 1.4 研究動機與目的 3 第二章 理論基礎與前人文獻 4 2.1 堇青石 4 2.1.1 堇青石礦物 4 2.1.2 堇青石結構 7 2.1.3 堇青石特性 10 2.2 人工合成堇青石 10 2.2.1 固態合成方法(Solid-state method) 10 2.2.2 溶膠凝膠法(Sol-gel method) 11 2.2.3 玻璃結晶法(Glass crystallization method) 12 2.2.4 堇青石合成反應路徑及中間相的影響 13 2.3 含Al2O3、SiO2礦物中的Al配位數 18 2.4 自然界環狀矽酸鹽礦物以及其生成環境[9, 71, 72] 29 2.5 Si-O-AlIV與六連環形成的條件及原因 [9, 71, 72] 32 2.6 人工製造Si-O-AlIV 33 2.7 Osumilite與Cordierite生成 36 2.8 機械化學(高能研磨)與擴散 38 2.9 接觸點與反應速率 38 2.10 活化能[111] 39 第三章 實驗方法 42 3.1 實驗設計 42 3.1.1 高能研磨產生amorphized SiO2 42 3.1.2 在α-Cordierite生成溫度範圍生成AlIV 43 3.2 原料與樣品製備與熱處理 47 3.2.1 高能研磨滑石-氧化鋁-氧化矽(TAS)系統 47 3.2.2 外加堇青石於滑石-氧化鋁-高嶺土(TAK)系統 50 3.3 特性分析 52 3.3.1 粉末基礎性質分析 52 3.3.2 粉末結晶相分析 52 3.3.3 熱差曲線分析 53 3.3.4 Solid-state NMR 分析 53 3.3.5 結晶相定量分析 57 第四章 以非晶質態SiO2引發AlIV 58 4.1 TAS系統熱反應 58 4.2 高能研磨製造 Amorphized SiO2幫助AlIV生成 62 4.2.1 高能研磨產生非晶質化相 62 4.2.2 Amorphized SiO2與AlIV 71 4.3 低溫生成Mg-Osumilite 74 4.3.1 熱反應過程分析 74 4.3.2 AlIV製造六連環-Mg-Osumilite的生成 79 4.3.3 Mg-Osumilite 與Cordierite 的生成 83 4.4 高能研磨的第二功能 91 4.5 高AlIV濃度環境的綠泥石-高嶺土-氧化矽系統 93 4.5.1 反應過程 93 4.5.2 高AlIV濃度環境-27Al NMR 分析 97 第五章 在α-Cordierite生成溫度區間生成AlIV 99 5.1 TAK系統反應過程 99 5.1.1 兩階段的非晶質SiO2釋出 99 5.1.2 非晶質SiO2參與堇青石合成 99 5.2 在α-Cordierite生成溫度區間生成AlIV 104 5.2.1 延後第一階段反應 104 5.2.2 在高溫生成AlIV 113 5.2.3 不同溫度下堇青石(AlIV)由Al2O3及mullite生成的比例 115 第六章 總結論與未來展望 119 參考文獻 120 附錄 130

    [1] W.C. Lou, K.X. Song, F. Hussain, B. Liu, H.B. Bafrooei, H.X. Lin, W.T. Su, F. Shi, D.W. Wang, Bond Characteristics and Microwave Dielectric Properties of (Li0.5Ga0.5)2+ Doped Mg2Al4Si5O18 Ceramics, Ceramics International, 46[18], 28631-28638 (2020).
    [2] A.E. Reda, F. Abd-El-Raoof, S.E. Ahmed, D.A.A. Aziz, R. Mahani, Sintering and Dielectric Behavior for Doped Cordierite by xCuO within MgO(1-x)-Al2O3-SiO2 Ceramics, Materials Chemistry and Physics, 243, 122616 (2020).
    [3] X. Lao, X. Xu, W. Jiang, J. Liang, L. Miao, Q. Wu, Influences of Impurities and Mineralogical Structure of Different Kaolin Minerals on Thermal Properties of Cordierite Ceramics for High-Temperature Thermal Storage, Applied Clay Science, 187, 105485 (2020).
    [4] Z. Chen, Z. Xu, F. Cui, J. Zhang, X. Sun, Y. Shang, R. Guo, N. Liu, S. Cai, C. Zheng, Direct Ink Writing of Cordierite Ceramics with Low Thermal Expansion Coefficient, Journal of the European Ceramic Society, 42[4], 1685-1693 (2022).
    [5] S.D. Aza, J.E.D.L. Monteros, Materiales Cerámicos de Cordierita, Boletín de la Sociedad Española de Cerámica y Vidrio, 6[6], 731-744 (1967).
    [6] A. Benhammou, Y. El Hafiane, A. Abourriche, Y. Abouliatim, L. Nibou, A. Yaacoubi, N. Tessier-Doyen, A. Smith, B. Tanouti, Influence of Sintering Temperature on the Microstructural and Mechanical Properties of Cordierite Synthesized from Andalusite and Talc, Materials Letters, 172, 198-201 (2016).
    [7] M. Valášková, M. Mikeska, S. Študentová, G. Simha Martynková, Cordierite/Steatite Ceramics Sintered from Talc, Kaolin and Vermiculites: Comparison of Natural and Organovermiculites Effect, Materials Today: Proceedings, 5, S88-S95 (2018).
    [8] 林逸歆、顏富士、向性一,配方原料中SiO2含量的改變對低溫合成堇青石之影響,台灣鑛業,69[2],21-32 (2017)。
    [9] C. Klein, B. Dutrow, The 23rd Edition of the Manual of Mineral Science: (after James D. Dana), John Wiley & Sons, 2008.
    [10] E.F. Osborn, A. Muan, Phase Equilibrium Diagrams of Oxide Systems, American Ceramic Society with the Edward Orton Jr. Ceramic Foundation Columbus, Ohio, Columbus, Ohio, 1960.
    [11] G.V. Gibbs, Polymorphism of Cordierite .I. Crystal Structure of Low Cordierite, American Mineralogist, 51[7], 1068-1087 (1966).
    [12] E.P. Meagher, G.V. Gibbs, The Polymorphism of Cordierite: II. The Crystal Structure of Indialite, Canadian Mineralogist, 15, 43-49 (1977).
    [13] M.D. Karkhanavala, F.A. Hummel, The Polymorphism of Cordierite, Journal of the American Ceramic Society, 36[12], 389-392 (1953).
    [14] A. Putnis, An Introduction to Mineral Sciences, Cambridge University Press, Cambridge, 1992.
    [15] L. Bonhommecoury, F. Babonneau, J. Livage, Comparative-Study of Various Sol-Gel Preparations of Cordierite Using 27Al and 29Si Liquid-State and Solid-State NMR-Spectroscopy, Chemistry of Materials, 5[3], 323-330 (1993).
    [16] M. Eskandari, F. Jahantigh, R. Malekfar, Synthesis and Characterization of Nanosized Pure α-cordierite Glass-Ceramic Powders, Journal of the Australian Ceramic Society, 54[2], 243-249 (2017).
    [17] M.F. Hochella, G.E. Brown, Structural Mechanisms of Anomalous Thermal-Expansion of Cordierite-Beryl and Other Framework Silicates, Journal of the American Ceramic Society, 69[1], 13-18 (1986).
    [18] P. Predecki, J. Haas, J. Faber, R.L. Hitterman, Structural Aspects of the Lattice Thermal-Expansion of Hexagonal Cordierite, Journal of the American Ceramic Society, 70[3], 175-182 (1987).
    [19] H. Ikawa, T. Otagiri, O. Imai, M. Suzuki, K. Urabe, S. Udagawa, Crystal-Structures and Mechanism of Thermal-Expansion of High Cordierite and Its Solid-Solutions, Journal of the American Ceramic Society, 69[6], 492-498 (1986).
    [20] A. Chowdhury, S. Maitra, H.S. Das, A. Sen, G.K. Samanta, P. Datta, Synthesis, Properties and Applications of Cordierite Ceramics, InterCeram: International Ceramic Review, 56, 98-102 (2007).
    [21] P. Orosco, M.d.C. Ruiz, J. González, Synthesis of Cordierite by Dolomite and Kaolinitic Clay Chlorination. Study of the Phase Transformations and Reaction Mechanism, Powder Technology, 267, 111-118 (2014).
    [22] E. Yalamaç, S. Akkurt, Additive and Intensive Grinding Effects on the Synthesis of Cordierite, Ceramics International, 32[7], 825-832 (2006).
    [23] Y. Li, X. Cheng, R. Zhang, Y. Wang, H. Zhang, Effect of Excess MgO on the Properties of Cordierite Ceramic Sintered by Solid-State Method, International Journal of Applied Ceramic Technology, 12[2], 443-450 (2015).
    [24] K. Zhu, D.Y. Yang, J. Wu, R. Zhang, Synthesis of Cordierite with Low Thermal Expansion Coefficient, Advanced Materials Research, 105-106, 802-804 (2010).
    [25] J.M. Benito, X. Turrillas, G.J. Cuello, A.H. De Aza, S. De Aza, M.A. Rodríguez, Cordierite Synthesis. A Time-Resolved Neutron Diffraction Study, Journal of the European Ceramic Society, 32[2], 371-379 (2011).
    [26] T. Fukui, C. Sakurai, M. Okuyama, Structure and Hydrolysis of a Complex Alkoxide as a Cordierite Precursor, Journal of Non-Crystalline Solids, 139[3], 205-214 (1992).
    [27] J. Livage, F. Babonneau, M. Chatry, L. Coury, Sol-Gel Synthesis and NMR Characterization of Ceramics, Ceramics International, 23[1], 13-18 (1997).
    [28] N.J. Azin, M.A. Camerucci, A.L. Cavalieri, Crystallisation of Non-stoichiometric Cordierite Glasses, Ceramics International, 31[1], 189-195 (2005).
    [29] Q. Zu, S. Huang, Y. Zhang, S. Huang, J. Liu, H. Li, Compositional Effects on Mechanical Properties, Viscosity, and Crystallization of (Li2O, B2O3, MgO)-Al2O3-SiO2 Glasses, Journal of Alloys and Compounds, 728, 552-563 (2017).
    [30] O.A. Al-Harbi, E.M.A. Hamzawy, Nanosized Cordierite–Sapphirine–Spinel Glass-Ceramics from Natural Raw Materials, Ceramics International, 40, 5283-5288 (2014).
    [31] R. Petrovic, D.J. Janackovic, S. Zec, S. Drmanic, L.J. Kostic-Gvozdenovic, Crystallization Behavior of Alkoxy-Derived Cordierite Gels, Journal of Sol-Gel Science and Technology, 28[1], 111-118 (2003).
    [32] W. Holand, G.H. Beall, Glass-Ceramic Technology, Wiley, 2019.
    [33] W.D. Johns, High-Temperature Phase Changes in Kaolinites, Mineralogical Magazine and Journal of the Mineralogical Society, 30[222], 186-198 (1953).
    [34] A.K. Chakraborty, DTA Study of Preheated Kaolinite in the Mullite Formation Region, Thermochimica Acta, 398[1-2], 203-209 (2003).
    [35] W. Wisniewski, C. Rüssel, Analysis of the Cordierite X-Phase and Phase Transformation by Electron Backscatter Diffraction (EBSD), Journal of Non-Crystalline Solids, 403, 124-129 (2014).
    [36] X.J. Hao, X.L. Hu, Z.W. Luo, T.Y. Liu, Z. Li, T. Wu, A.X. Lu, Y. Tang, Preparation and Properties of Transparent Cordierite-Based Glass-Ceramics with High Crystallinity, Ceramics International, 41[10], 14130-14136 (2015).
    [37] I. Szabó, Crystallization of Magnesium Aaluminosilicate Glasses, Journal of Non-Crystalline Solids, 219, 128-135 (1997).
    [38] S. Chandrasekhar, P.N. Pramada, Kaolin-based Zeolite Y, a Precursor for Cordierite Ceramics, Applied Clay Science, 27[3], 187-198 (2004).
    [39] E.G. Avvakumov, G.G. Lepezin, A.A. Gusev, O.B. Vinokourova, Role of Acid-Base Interactions in Synthesis of Cordierite from Talc and Sillimanite Group Minerals, Science of Sintering, 45[3], 273-279 (2013).
    [40] Y. Hirose, H. Doi, O. Kamigaito, Thermal-Expansion of Hot-Pressed Cordierite Glass-Ceramics, Journal of Materials Science Letters, 3[2], 153-155 (1984).
    [41] J. Banjuraizah, H. Mohamad, Z.A. Ahmad, Effect of Excess MgO Mole Ratio in a Stoichiometric Cordierite (2MgO·2Al2O3·5SiO2) Composition on the Phase Transformation and Crystallization Behavior of Magnesium Aluminum Silicate Phases, International Journal of Applied Ceramic Technology, 8[3], 637-645 (2011).
    [42] Z.M. Shi, Sintering Additives to Eliminate Interphases in Cordierite Ceramics, Journal of the American Ceramic Society, 88[5], 1297-1301 (2005).
    [43] P. Scardi, N. Sartori, A. Giachello, P.P. Demaestri, F. Branda, Influence of Calcium-Oxide and Sodium-Oxide on the Microstructure of Cordierite Catalyst Supports, Ceramics International, 19[2], 105-111 (1993).
    [44] C.W. Burnham, Refinement of the Crystal Structure of Sillimanite, Zeitschrift für Kristallographie - Crystalline Materials, 118[1-6], 127-148 (1963).
    [45] C.W. Burnham, M.J. Buerger, Refinement of the Crystal Structure of Andalusite, Zeitschrift für Kristallographie - Crystalline Materials, 115[1-6], 269-290 (1961).
    [46] H. Schneider, R.X. Fischer, J. Schreuer, D.J. Green, Mullite: Crystal Structure and Related Properties, Journal of the American Ceramic Society, 98[10], 2948-2967 (2015).
    [47] G.W. Brindley, D.L. Gibbon, Kaolinite Layer Structure - Relaxation by Dehydroxylation, Science, 162[3860], 1390-1391 (1968).
    [48] A.J. Leonard, Structural Analysis of the Transition Phases in the Kaolinite-Mullite Thermal Sequence, Journal of the American Ceramic Society, 60[1-2], 37-43 (1977).
    [49] H.J. Percival, J.F. Duncan, P.K. Foster, Interpretation of the Kaolinite-Mullite Reaction Sequence from Infrared Absorption Spectrum, Journal of The American Ceramic Society, 57[2], 57-61 (1974).
    [50] A.K. Chakravorty, D.K. Ghosh, Kaolinite-Mullite Reaction Series: the Development and Significance of a Binary Aluminosilicate Phase, Journal of the American Ceramic Society, 74[6], 1401-1406 (1991).
    [51] I.W.M. Brown, K.J.D. MacKenzie, M.E. Bowden, R.H. Meinhold, Outstanding Problems in the Kaolinite-Mullite Reaction Sequence Investigated by 29Si and 27Al Solid-state Nuclear Magnetic Resonance: 11, High-Temperature Transformations of Metakaolinite, Journal of the American Ceramic Society, 68[6], 298-301 (1985).
    [52] S. Sperinck, P. Raiteri, N. Marks, K. Wright, Dehydroxylation of Kaolinite to Metakaolin—a Molecular Dynamics Study, Journal of Materials Chemistry, 21[7], 2118-2125 (2011).
    [53] C.S. Cundy, P.A. Cox, The Hydrothermal Synthesis of Zeolites: Precursors, Intermediates and Reaction Mechanism, Microporous and Mesoporous Materials, 82[1-2], 1-78 (2005).
    [54] C.T. Chen, K. Iyoki, P.D. Hu, H. Yamada, K. Ohara, S. Sukenaga, M. Ando, H. Shibata, T. Okubo, T. Wakihara, Reaction Kinetics Regulated Formation of Short-Range Order in an Amorphous Matrix during Zeolite Crystallization, Journal of the American Chemical Society, 143[29], 10986-10997 (2021).
    [55] W. Kim, Q. Zhang, F. Saito, Syntheses of Zeolite-A and X from Kaolinite Activated by Mechanochemical Treatment, Journal of Chemical Engineering of Japan, 33[2], 217-222 (2000).
    [56] W. Li, C. Yan, W. Hu, Synthesis and Characterization of Zeolite 4A from Soft Kaolin, Desalination and Water Treatment, 22[1-3], 87-90 (2012).
    [57] T. Armbruster, M. Gunter, Crystal Structures of Natural Zeolites, Reviews in Mineralogy and Geochemistry, 45, 1-67 (2001).
    [58] H.S. Yoder, The MgO Al2O3 SiO2 H2O System and the Related Metamorphic Facies, American Journal of Science, 250, 569-627 (1952).
    [59] H. Staudigel, W. Schreyer, The Upper Thermal Stability of Clinochlore, Mg5Al[AlSi3O10](OH)8, at 10–35 kb PH2O, Contributions to Mineralogy and Petrology, 61[2], 187-198 (1977).
    [60] A.W. Mconie, J.J. Fawcett, R.S. James, Stability of Intermediate Chlorites of Clinochlore-Daphnite Series at 2 Kbar PH2O, American Mineralogist, 60[11-1], 1047-1062 (1975).
    [61] M. Yang, L. Han, Y. Xu, H. Ke, N. Zhou, H. Dong, S. Liu, G. Qiao, Near Infrared Spectroscopic Study of Trioctahedral Chlorites and Its Remote Sensing Application, Open Geosciences, 11, 815-828 (2019).
    [62] J.J. Papike, M. Cameron, Crystal Chemistry of Silicate Minerals of Geophysical Interest, Reviews of Geophysics, 14[1], 37-80 (1976).
    [63] J.B. Rodrigues Neto, D. Hotza, R. Moreno, Effect of the Mechanical Activation of a Talc/Kaolin/Alumina Mixture on the Mechanism and Kinetics of Cordierite Formation, Química Nova, 37[2], 195-199 (2014).
    [64] J.B. Rodrigues Neto, R. Moreno, Effect of Mechanical Activation on the Rheology and Casting Performance of Kaolin/Talc/Alumina Suspensions for Manufacturing Dense Cordierite Bodies, Applied Clay Science, 38[3-4), 209-218 (2008).
    [65] 理. 中原, 豊. 橋塚, 祥. 近藤, 健. 浜野, コーディエライトセラミックスの形成過程におけるタルクの挙動, 日本セラミックス協会学術論文誌, 102[1181), 18-22 (1994).
    [66] J.M. Filio, K. Sugiyama, E. Kasai, F. Saito, Effect of Dry Mixed Grinding of Talc, Kaolinite and Gibbsite on Preparation of Cordierite Ceramics, Journal of Chemical Engineering of Japan, 26[5], 565-569 (1993).
    [67] M. Nakahara, Y. Kondo, K. Hamano, Effect of Kaolin Grain Size on Firing Process and Physical Properties of Cordierite Ceramics, Journal of the Ceramic Society of Japan, 106[8], 787-791 (1998).
    [68] T.T. Parlak, A.S. Demirkiran, Zeolite Usage as Source of Silica to Produce Cordierite in MgO–Al2O3–SiO2 System, Journal of Advanced Ceramics, 7[4], 370-379 (2018).
    [69] Z. Li, J.F. Wu, L. Song, Y.Q. Huang, Effect of Composition on Sinter-Crystallization and Properties of Low Temperature Co-Fired a-Cordierite Glass-Ceramics, Journal of the European Ceramic Society, 34[15], 3981-3991 (2014).
    [70] 吳柏諺,滑石尾礦粉末粒徑對合成堇青石之影響,國立成功大學資源工程系,碩士論文,中華民國一零四年。
    [71] W.A. Deer, R.A. Howie, J. Zussman, Rock-Forming Minerals: Disilicates and Ring Silicates, Volume 1B, Geological Society, 1997.
    [72] L.A. Raymond, Petrology: The Study of Igneous, Sedimentary, and Metamorphic Rocks, McGraw-Hill, 2002.
    [73] B.G. E., G.G. V., Refinement of the Crystal Structure of Osumilite, The American Mineralogist, 54, 101-116 (1969).
    [74] Y. Zhao, J. Du, X. Qiao, X. Cao, C. Zhang, G. Xu, Y. Liu, S. Peng, G. Han, Ionic Self-Diffusion of Na2O–Al2O3–SiO2 Glasses from Molecular Dynamics Simulations, Journal of Non-Crystalline Solids, 527, 119734 (2020).
    [75] J.H. Konnert, J. Karle, G.A. Ferguson, Crystalline Ordering in Silica and Germania Glasses, Science, 179[4069], 177-179 (1973).
    [76] S.H. Risbud, R.J. Kirkpatrick, A.P. Taglialavore, B. Montez, Solid-State NMR Evidence of 4-, 5, and 6-Fold Aluminum Sites in Roller-Quenched SiO2-Al2O3 Glasses, Journal of the American Ceramic Society, 70[1], C‐10-C‐12 (1987).
    [77] Y. Sasaki, K. Ishii, Structures of Molten Silicate and Aluminosilicate Slags, Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan, 88[8], 419-429 (2002).
    [78] D.R. Neuville, L. Cormier, V. Montouillout, D. Massiot, Local Al Site Distribution in Aluminosilicate Glasses by 27Al MQMAS NMR, Journal of Non-Crystalline Solids, 353[2], 180-184 (2007).
    [79] B. Mysen, Structure of Aluminosilicate Melts, Isij International, 61[12], 2866-2881 (2021).
    [80] E.D. Lacy, Configuration Change in Silicates with Particular Reference to Network Structures, Acta Crystallographica, 18[2], 141-150 (1965).
    [81] B.T. Poe, P.F. McMillan, B. Cote, D. Massiot, J.P. Coutures, Silica-alumina Liquids: In-situ Study by High-Temperature 27Al NMR Spectroscopy and Molecular Dynamics Simulation, The Journal of Physical Chemistry, 96[21], 8220-8224 (1992).
    [82] J. Ren, L. Zhang, H. Eckert, Medium-Range Order in Sol–Gel Prepared Al2O3–SiO2 Glasses: New Results from Solid-State NMR, The Journal of Physical Chemistry C, 118[9], 4906-4917 (2014).
    [83] M. Okuno, N. Zotov, M. Schmücker, H. Schneider, Structure of SiO2–Al2O3 Glasses: Combined X-ray Diffraction, IR and Raman Studies, Journal of Non-Crystalline Solids, 351[12], 1032-1038 (2005).
    [84] S. Sen, R.E. Youngman, High-Resolution Multinuclear NMR Structural Study of Binary Aluminosilicate and Other Related Glasses, The Journal of Physical Chemistry B, 108[23], 7557-7564 (2004).
    [85] A.R. Allu, A. Gaddam, S. Ganisett, S. Balaji, R. Siegel, G.C. Mather, M. Fabian, M.J. Pascual, N. Ditaranto, W. Milius, J. Senker, D.A. Agarkov, V.V. Kharton, J.M.F. Ferreira, Structure and Crystallization of Alkaline-Earth Aluminosilicate Glasses: Prevention of the Alumina-Avoidance Principle, Journal of Physical Chemistry B, 122[17], 4737-4747 (2018).
    [86] J. Du, Molecular Dynamics Simulations of the Structure and Properties of Low Silica Yttrium Aluminosilicate Glasses, Journal of the American Ceramic Society, 92[1), 87-95 (2009).
    [87] A.N. Novikov, D.R. Neuville, L. Hennet, Y. Gueguen, D. Thiaudière, T. Charpentier, P. Florian, Al and Sr Environment in Tectosilicate Glasses and Melts: Viscosity, Raman and NMR Investigation, Chemical Geology, 461, 115-127 (2017).
    [88] A. Léonard, S. Suzuki, J.J. Fripiat, C.D. Kimpe, Structure and Properties of Amorphous Silicoaluminas. I. Structure from X-Ray Fluorescence Spectroscopy and Infrared Spectroscopy, The Journal of Physical Chemistry, 68[9], 2608-2617 (1964).
    [89] A. Miyashiro, Osumilite, a New Mineral, and Cordierite in Volcanic Rocks, Proceedings of the Japan Academy, 29[7], 321-323 (1953).
    [90] Y.V. Seryotkin, E.V. Sokol, V.V. Bakakin, A.Y. Likhacheva, Pyrometamorphic Osumilite: Occurrence, Paragenesis, and Crystal Structure as Compared to Cordierite, European Journal of Mineralogy, 20[2], 191-198 (2008).
    [91] W. Schreyer, G. Hentschel, K. Abraham, Osumilith in der Eifel und die Verwendung dieses Minerals als petrogenetischer Indikator, Tschermaks mineralogische und petrographische Mitteilungen, 31, 215-234 (1983).
    [92] G. Carlier, J.P. Lorand, J.R. Kienast, Magnatic Osumilite in an Ultrapotassoc Dyke, Southern Peru - First Occurence, European Journal of Mineralogy, 6[5], 657-665 (1994).
    [93] W. Schreyer, J.F. Schairer, Metastable Osumilite- and Petalite-Type Phases in the System MgO-Al2O3-SiO2, American Mineralogist, 47[1-2], 90-104 (1962).
    [94] W. Schreyer, F. Seifert, Metastability of an Osumilite End Member in the System K2O-MgO-Al2O3-SiO2-H2O and its Possible Bearing on the Rarity of Natural Osumilites, Contributions to Mineralogy and Petrology, 14[4], 343-358 (1967).
    [95] W. Winter, C. Bogdanow, G. Muller, W. Pannhorst, Crystallization Sequence of Barium Osumilite and MAS Osumilite Glass-Ceramics with Low Thermal-expansion, Glastechnische Berichte-Glass Science and Technology, 66[5], 109-117 (1993).
    [96] W. Winter, A. Berger, G. Muller, W. Pannhorst, Crystallization Mechanism of MAS-Osumilite with Composition Mg2Al4Si11O30 from Glass, Journal of the American Ceramic Society, 76[7], 1837-1843 (1993).
    [97] A. Terzic, N. Obradovic, D. Kosanovic, J. Stojanovic, A. Dordevic, L. Andric, V.B. Pavlovic, Effects of Mechanical-Activation and TiO2 Addition on the Behavior of Two-Step Sintered Steatite Ceramics, Ceramics International, 45[3], 3013-3022 (2019).
    [98] S. Lukin, M. Tireli, T. Stolar, D. Barisic, M.V. Blanco, M. di Michiel, K. Uzarevic, I. Halasz, Isotope Labeling Reveals Fast Atomic and Molecular Exchange in Mechanochemical Milling Reactions, Journal of the American Chemical Society, 141[3], 1212-1216 (2019).
    [99] B. Mehta, C. Sasikumar, Mechanochemical Synthesis of PZT Powders and the Effects of Mechanical Activation on Solid-State Sintering Kinetics, Transactions of the Indian Institute of Metals, 76, 849–857 (2023).
    [100] J.Q. Li, G.H. Liu, X.M. Wu, G. He, Z.C. Yang, J.T. Li, Reaction Mechanism in Mechanochemical Synthesis of Cu2-xSe, Ceramics International, 44[18], 22172-22175 (2018).
    [101] Y. Hongbo, C. Meiling, W. Xiuhui, G. Hong, Synthesis of Magnesium-Aluminum Layered Double Hydroxides by Mechanochemical Method and its Solid State Reaction Kinetics, Archives of Metallurgy and Materials, 60[2], 1455-1457 (2015).
    [102] P. Bhardwaj, R. Gupta, D. Mishra, M. Mudgal, S.S. Amritphale, 27Al NMR MAS Spectral Studies Inferring the Initiation of Geopolymerization Reaction on Together Mechanochemical Grinding of Raw Materials, Journal of the Chinese Chemical Society, 65[4], 485-489 (2018).
    [103] Y.-J. Hao, T. Tanaka, A New Experimental Method to Specify the Diffusing Component in a Reacting Particulate Packing, The Canadian Journal of Chemical Engineering, 68[1], 81-88 (1990).
    [104] Y.J. Hao, T. Tanaka, Role of the Contact Points between Particles on the Reactivity of Solids, Canadian Journal of Chemical Engineering, 66[5], 761-766 (1988).
    [105] Y.-J. Hao, T. Tanaka, Analysis of Solid-Solid Reaction Controlled by Unidirectional Diffusion, International Chemical Engineering (Quarterly Journal of Translations from Russia, Eastern Europe and Asia), 13[6], 764-772 (1987).
    [106] A. Shimizu, J. Saitou, Y.-J. Hao, Effect of Contact Points betweenParticles on the Reaction Rate in the Fe2O3-V2O5 System, Solid State Ionics, 38[3], 261-269 (1990).
    [107] V.V. Dalvi, A.K. Suresh, A Contact-Point Based Approach for the Analysis of Reactions among Solid Particles, Aiche Journal, 57[5], 1329-1338 (2011).
    [108] M.E. Brown, S.J. Taylor, M.J. Tribelhorn, Fuel-Oxidant Particle Contact in Binary Pyrotechnic Reactions, Propellants Explosives Pyrotechnics, 23[6], 320-327 (1998).
    [109] H. Yoshida, Y. Tamada, M. Asano, Y. Ookubo, Effect of Dissolved Impurities on the Rate of Recovery and Recrystallization in an A1050 Aluminum Hot-Rolled Sheet, Materials Transactions, 59[10], 1551-1559 (2018).
    [110] V. Firouzdor, J. Brechtl, L. Wilson, B. Semerau, K. Sridharan, T.R. Allen, Development of Titanium Diffusion Barrier Coatings for Mitigation of Fuel-Cladding Chemical Interactions, Surface & Coatings Technology, 219, 59-68 (2013).
    [111] S.S. Zumdahl, Chemical Principles, Brooks/Cole, Cengage Learning, Belmont, 6th Ed., 2009.
    [112] M. Avrami, Kinetics of Phase Change I - General Theory, Journal of Chemical Physics, 7[12], 1103-1112 (1939).
    [113] M. Avrami, Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei, Journal of Chemical Physics, 8, 212-224 (1940).
    [114] M. Avrami, Granulation, Phase Change, and Microstructure - Kinetics of Phase Change. III, Journal of Chemical Physics, 9[2], 177-184 (1941).
    [115] H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Analytical Chemistry, 29[11], 1702-1706 (1957).
    [116] S. Lamara, D. Redaoui, F. Sahnoune, N. Saheb, Effect of Temperature and Magnesia on Phase Transformation Kinetics in Stoichiometric and Non-Stoichiometric Cordierite Ceramics Prepared from Kaolinite Precursors, Journal of Thermal Analysis and Calorimetry, 137[1], 11-23 (2019).
    [117] L. Smail, D. Redaoui, F. Sahnoune, M. Heraiz, N. Saheb, Formation of Anorthite Containing Cordierite Materials through Reaction Sintering Kaolin, MgO and CaO Precursors, Science of Sintering, 52, 135-147 (2020).
    [118] É. Makó, R.L. Frost, J. Kristóf, E. Horváth, The Effect of Quartz Content on the Mechanochemical Activation of Kaolinite, Journal of Colloid and Interface Science, 244[2], 359-364 (2001).
    [119] M. Valera-Zaragoza, D. Agüero-Valdez, M. Lopez-Medina, S. Dehesa-Blas, A. Karin Navarro-Mtz, M. Avalos-Borja, E.A. Juarez-Arellano, Controlled Modification of Sodium Montmorillonite Clay by A Planetary Ball-mill as A Versatile Tool to Tune its Properties, Advanced Powder Technology, 32[2], 591-599 (2021).
    [120] R. Speyer, Thermal Analysis of Materials, Taylor & Francis, 1993.
    [121] Y.M. Chiang, D.P. Birnie, W.D. Kingery, Physical Ceramics: Principles for Ceramic Science and Engineering, Wiley, 1996.
    [122] I.W.M. Brown, K.J.D. MacKenzie, M.E. Bowden, R.H. Meinhold, Outstanding Problems in the Kaolinite‐Mullite Reaction Sequence Investigated by 29Si and 27Al Solid‐state Nuclear Magnetic Resonance 11, High‐Temperature Transformations of Metakaolinite, Journal of Americam Ceramic Society, 68[6], 298-301 (1985).
    [123] E.S. Thomas, J.G. Thompson, R.L. Withers, M. Sterns, Y. Xiao, R.J. Kirkpatrick, Further Investigation of the Stabilization of β-Cristobalite, Journal of the American Ceramic Society, 77[1], 49-56 (1994).
    [124] B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing Company, 1978.
    [125] L. Khouchaf, K. Boulahya, P.P. Das, S. Nicolopoulos, V.K. Kis, J.L. Labar, Study of the Microstructure of Amorphous Silica Nanostructures Using High-Resolution Electron Microscopy, Electron Energy Loss Spectroscopy, X-ray Powder Diffraction, and Electron Pair Distribution Function, Materials, 13[19], 4393 (2020).
    [126] J. Bertaux, F. Fröhlich, P. Ildefonse, Multicomponent Analysis of FTIR Spectra: Quantification of Amorphous and Crystallized Mineral Phases in Synthetic and Natural Sediments, Journal of Sedimentary Research, 68[3], 440-447 (1998).
    [127] C.A. Rees, J.L. Provis, G.C. Lukey, J.S. van Deventer, Attenuated Total Reflectance Fourier Transform Infrared Analysis of Fly Ash Geopolymer Gel Aging, Langmuir, 23[15], 8170-8179 (2007).
    [128] M. Sitarz, M. Handke, W. Mozgawa, Calculations of Silicooxygen Ring Vibration Frequencies, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 55[14], 2831-2837 (1999).
    [129] R. Balzer, H. Behrens, T. Waurischk, S. Reinsch, R. Müller, P. Kiefer, J. Deubener, M. Fechtelkord, Water in Alkali Aluminosilicate Glasses, Frontiers in Materials, 7 (2020).
    [130] M. Todea, R.V.F. Turcu, B. Frentiu, S. Simon, FTIR and NMR Evidence of Aluminosilicate Microspheres Bioactivity Tested in Simulated Body Fluid, Journal of Non-Crystalline Solids, 432, 413-419 (2016).
    [131] K.E. Thomson, D.T. Jiang, R.O. Ritchie, A.K. Mukherjee, A Preservation Study of Carbon Nanotubes in Alumina-based Nanocomposites via Raman Spectroscopy and Nuclear Magnetic Resonance, Applied Physics a-Materials Science & Processing, 89, 651-654 (2007).
    [132] L.A. O'Dell, S.L.P. Savin, A.V. Chadwick, M.E. Smith, A 27Al MAS NMR Study of a Sol-gel Produced Alumina: Identification of the NMR Parameters of the θ-Al2O3 Transition Alumina Phase, Solid State Nuclear Magnetic Resonance, 31[4], 169-173 (2007).
    [133] I. Fuchs, Y. Aluma, M. Ilan, Y. Mastai, Induced Crystallization of Amorphous Biosilica to Cristobalite by Silicatein, The Journal of Physical Chemistry B, 118[8], 2104-2111 (2014).
    [134] B. Zagrajczuk, M. Dziadek, Z. Olejniczak, B. Sulikowski, K. Cholewa-Kowalska, M. Laczka, Structural Investigation of Gel-derived Materials from the SiO2-Al2O3 System, Journal of Molecular Structure, 1167, 23-32 (2018).
    [135] A.M. Menchi, A.N. Scian, Mechanism of Cordierite Formation Obtained by the Sol–Gel Technique, Materials Letters, 59[21], 2664-2667 (2005).
    [136] I. Janković-Častvan, S. Lazarević, D. Tanasković, A. Orlović, R. Petrović, D. Janaćković, Phase Transformation in Cordierite Gel Synthesized by Non-hydrolytic Sol–Gel Route, Ceramics International, 33[7], 1263-1268 (2007).
    [137] N.H.H. Phuc, T. Okuno, A. Matsuda, H. Muto, Ex situ Raman Mapping Study of Mechanism of Cordierite Formation from Stoichiometric Oxide Precursors, Journal of the European Ceramic Society, 34[4], 1009-1015 (2014).
    [138] M. Majumder, S. Mukhopadhyay, O. Parkash, D. Kumar, Sintering and Crystallisation Behaviour of Chemically Prepared Cordierite for Application in Electronic Packaging, Ceramics International, 30(6), 1067-1070 (2004).
    [139] H. Staudigel, W. Schreyer, Upper Thermal-Stability of Clinochlore, Mg5Al[AlSi3O10](OH)8, at 10-35 Kb PH2O, Contrib Mineral Petr, 61, 187-198 (1977).
    [140] S. Yürüyen, N. Toplan, K. Yildiz, H. Özkan Toplan, The Non-Isothermal Kinetics of Cordierite Formation in Mechanically Activated Talc–Kaolinite–Alumina Ceramics System, Journal of Thermal Analysis and Calorimetry, 125(2), 803-808 (2016).
    [141] M. Wesolowski, Thermal-Decomposition of Talc - a Review, Thermochimica Acta, 78(1-3), 395-421 (1984).
    [142] S. Zhu, S. Ding, H.a. Xi, Q. Li, R. Wang, Preparation and Characterization of SiC/Cordierite Composite Porous Ceramics, Ceramics International, 33, 115-118 (2007).
    [143] D. Cai, Z. Yang, X. Duan, P. He, S. Wang, J. Yuan, J. Rao, D. Jia, Y. Zhou, Inhibiting Crystallization Mechanism of h-BN on α-Cordierite in BN-MAS Composites, Journal of the European Ceramic Society, 36, 905-909 (2016).

    無法下載圖示 校內:2028-09-08公開
    校外:2028-09-08公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE