| 研究生: |
吳宜庭 Wu, Yi-Ting |
|---|---|
| 論文名稱: |
稻米芽鞘胰蛋白酶抑制劑之片段胜肽抑制胰蛋白酶及抗氧化活性之研究 The Protease Inhibition and Antioxidant Activities of Synthesized Peptides Based on the Rice Coleoptile Trypsin Inhibitor |
| 指導教授: |
黃福永
Huang, Fu-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 絲胺酸蛋白酶抑制劑 、胰蛋白酶抑制劑 、稻米芽鞘 、合成胜肽片段 |
| 外文關鍵詞: | serine protease inhibitor, trypsin inhibitor, rice coleoptile, synthesized peptide |
| 相關次數: | 點閱:130 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Bowman-Birk型絲胺酸胰蛋白酶抑制劑是現今研究數量最多且廣泛的抑制劑之一,通常被稱為典型BBI ( classic BBI )。BBI已被發現存在豆類、穀類和禾本科植物中並且以雙子葉植物及單子葉植物來分類。雙子葉與單子葉植物的BBI組成是有差異的,其反應位置( reactive site )也不盡相同。雙子葉植物的BBI皆含有兩個反應位置可以活化,因此可以同時抑制胰蛋白酶( trypsin )、胰凝乳蛋白酶( α-chymotrypsin )及彈性蛋白酶( elastase );來自單子葉植物的BBI有兩種類型,一種是由分子量8 kDa的單個多肽鏈所構成並且只有單一活性位置,而另一組為16 kDa的分子量具有兩個活性位置,研究顯示具有兩個活性位置的單子葉植物的BBI當其中一個活性位置被佔用時,蛋白酶結合的相對親和力會被改變。
本研究合成三種模擬水稻胜肽片段之絲胺酸胰蛋白酶抑制劑:直鏈RD-14、直鏈MC-33及環狀RD-14 C3-C11並分別與胰蛋白酶及α-胰凝乳蛋白酶作用,已知水稻為單子葉植物因此藉由酵素動力學觀察其抑制類型、單一或雙活性位置及抑制劑與酵素親和力大小。
最終,研究結果顯示胰蛋白酶和直鏈RD-14呈non-competitive 抑制作用、直鏈MC-33呈un-competitive抑制作而環狀RD-14 C3-C11呈partial uncompetitive抑制作用;α-胰凝乳蛋白酶則和直鏈RD-14呈competitive 抑制作用但直鏈MC-33和環狀RD-14 C3-C11則無呈現抑制反應。
胰蛋白酶抑製劑在現今研究上已逐漸被證實具抗氧化活性,活性氧被認為是造成心臟病和衰老的原因而胰蛋白酶抑制劑能增強活性氧清除酶( oxygen species scavenging enzymes )的活性,因此本研究藉由氧化活性測試發現三種模擬水稻胜肽片段之絲胺酸蛋白酶抑制劑均具有抗氧化效力。胰蛋白酶抑制劑具抗活性氧能力並能與受體的結合能夠有效地降低蛋白酶的活性並抑制癌細胞對基底膜的浸潤,阻斷腫瘤細胞的轉移,因此三種模擬水稻胜肽片段之絲胺酸蛋白酶抑制劑:直鏈RD-14、直鏈MC-33及環狀RD-14 C3-C11作為因氧化而造成的疾病及癌症治療上具有發展的潛力。
Three peptides based on the rice coleoptile trypsin inhibitor were designed and synthesized. These synthesized peptides were further to assay their activity toward inhibiting the trypsin and α-chymotrypsin activity by using L-BAPNA and BTEE as substrate, respectively.
The result showed that three peptides do have the obviously activity to inhibit the trypsin showing non-competitive, partial uncompetitive and uncompetitive inhibition mode but they didn’t show the activity to inhibit the α-chymotrypsin. The antioxidant assays were carried out using DPPH as the substrate and showed these peptides all have antioxidant potential.
1. Hedstrom, L., Serine protease mechanism and specificity. Chemical reviews 2002, 102 (12), 4501-4524.
2. Rawlings, N. D.; Barrett, A. J., [2] Families of serine peptidases. Methods in enzymology 1994, 244, 19-61.
3. Green, T.; Ryan, C. A., Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 1972, 175 (4023), 776-777.
4. Li, Y.; Huang, Q.; Zhang, S.; Liu, S.; Chi, C.; Tang, Y., Studies on an artificial trypsin inhibitor peptide derived from the mung bean trypsin inhibitor: chemical synthesis, refolding, and crystallographic analysis of its complex with trypsin. The Journal of Biochemistry 1994, 116 (1), 18-25.
5. Nelson, D. L.; Lehninger, A. L.; Cox, M. M., Lehninger principles of biochemistry. Macmillan: 2008.
6. Michal, G.; Schomburg, D., Biochemical pathways: an atlas of biochemistry and molecular biology. Wiley New York: 1999.
7. Dreon, M. S.; Ituarte, S.; Heras, H., The role of the proteinase inhibitor ovorubin in apple snail eggs resembles plant embryo defense against predation. PLoS One 2010, 5 (12), e15059.
8. Habib, H.; Fazili, K. M., Plant protease inhibitors: a defense strategy in plants. Biotechnology and Molecular Biology Reviews 2007, 2 (3), 68-85.
9. Wen, T.-J.; Hochholdinger, F.; Sauer, M.; Bruce, W.; Schnable, P. S., The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis. Plant physiology 2005, 138 (3), 1637-1643.
10. Laing, W.; McManus, M. T., Proteinase inhibitors. Protein-Protein Interactions in Plant Biology. CRC Press, Boca Raton, FL 2002, 77-119.
11. Wan, H.; Lee, K. S.; Kim, B. Y.; Zou, F. M.; Yoon, H. J.; Je, Y. H.; Li, J.; Jin, B. R., A spider-derived Kunitz-type serine protease inhibitor that acts as a plasmin inhibitor and an elastase inhibitor. PLoS One 2013, 8 (1), e53343.
12. Noonan, D. M.; Fulle, A.; Valente, P.; Cai, S.; Horigan, E.; Sasaki, M.; Yamada, Y.; Hassell, J. R., The complete sequence of perlecan, a basement membrane heparan sulfate proteoglycan, reveals extensive similarity with laminin A chain, low density lipoprotein-receptor, and the neural cell adhesion molecule. Journal of Biological Chemistry 1991, 266 (34), 22939-22947.
13. Kobayashi, H.; Gotoh, J.; Hirashima, Y.; Terao, T., Inter--trypsin Inhibitor Bound to Tumor Cells Is Cleaved into the Heavy Chains and the Light Chain on the Cell Surface. Journal of Biological Chemistry 1996, 271 (19), 11362-11367.
14. 曾國輝, 大學生物化學. 藝軒書局, 臺北 1993, 187-207.
15. Shapiro, R.; Vallee, B. L., Interaction of human placental ribonuclease with placental ribonuclease inhibitor. Biochemistry 1991, 30 (8), 2246-2255.
16. Lundblad, R. L., Chemical reagents for protein modification. CRC press: 2014.
17. Berg, J. M.; Tymoczko, J. L.; Stryer, L., Biochemistry. 5th. New York: WH Freeman 2002, 38 (894), 76.
18. 呂鋒洲; 林仁混, 基礎酵素學. 聯經出版事業公司: 1991.
19. Whiteley, C. G., Enzyme kinetics: partial and complete uncompetitive inhibition. Biochemistry and Molecular Biology Education 2000, 28 (3), 144-147.
20. Dutt, S.; Wilch, C.; Schrader, T., Artificial synthetic receptors as regulators of protein activity. Chemical Communications 2011, 47 (19), 5376-5383.
21. Shamsi, T. N.; Parveen, R.; Fatima, S., Trypsin inhibitors demonstrate antioxidant activities, inhibit A549 cell proliferation, and increase activities of reactive oxygen species scavenging enzymes. Indian Journal of Pharmacology 2017, 49 (2), 155.
22. Hou, W.-C.; Chen, Y.-C.; Chen, H.-J.; Lin, Y.-H.; Yang, L.-L.; Lee, M.-H., Antioxidant activities of trypsin inhibitor, a 33 KDa root storage protein of sweet potato (Ipomoea batatas (L.) Lam cv. Tainong 57). Journal of agricultural and food chemistry 2001, 49 (6), 2978-2981.
23. Tashiro, M.; Hashino, K.; SHIOZAKI, M.; Ibuki, F.; Maki, Z., The complete amino acid sequence of rice bran trypsin inhibitor. The Journal of Biochemistry 1987, 102 (2), 297-306.
24. Tepe, B.; Daferera, D.; Tepe, A.-S.; Polissiou, M.; Sokmen, A., Antioxidant activity of the essential oil and various extracts of Nepeta flavida Hub.-Mor. from Turkey. Food Chemistry 2007, 103 (4), 1358-1364.
25. Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T., Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of agricultural and food chemistry 1992, 40 (6), 945-948.
26. Oyaizu, M., Studies on products of browning reaction. The Japanese Journal of Nutrition and Dietetics 1986, 44 (6), 307-315.
27. Cornely, K.; Crespo, E.; Earley, M.; Kloter, R.; Levesque, A.; Pickering, M., Kinetics of papain: An introductory biochemistry laboratory experiment. J. Chem. Educ 1999, 76 (5), 644.
校內:立即公開