簡易檢索 / 詳目顯示

研究生: 陳俊諺
Chen, Jyun-Yan
論文名稱: 以氯離子驅動伽凡尼電置換反應合成銀釕奈米籠
Chloride Induced Galvanic Replacement Reaction for Synthesizing Ag-Ru Nanocages
指導教授: 吳欣倫
Wu, Hsin-Lun
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 42
中文關鍵詞: 奈米籠伽凡尼電置換反應氯離子釕金屬銀奈米立方體
外文關鍵詞: Nanocage, Galvanic replacement reaction, Ruthenium, Ag nanocubes, chloride ions
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇文章主要是在探討由鹵素離子誘導伽凡尼電置換反應的發生,探討在合成銀釕奈米籠時,氯離子在伽凡尼電置換反應中扮演的角色。我們利用兩種不同的釕金屬前驅物,[分別為三氯化釕RuCl3及乙酰丙酮釕Ru(acac)3],以銀奈米立方體作為模板來進行銀釕奈米籠的合成,發現只有三氯化釕( RuCl3) 能順利進行伽凡尼電置換反應,並產生銀釕奈米籠,若以乙酰丙酮釕Ru(acac)3 反應則產物為銀-釕核殼結構奈米立方體。此外,若在以乙酰丙酮釕Ru(acac)3 作為金屬前驅物時添加鹵素離子,我們發現伽凡尼電置換反應亦會發生,並產生銀釕奈米籠。

    This research aimed to explore the role of chloride in the galvanic replacement reaction for synthesizing Ag-Ru nanocages. Two different ruthenium metal precursors (e.g. RuCl3 and Ru (acac)3) were used to synthesize Ag-Ru nanocages by using Ag nanocubes as templates. We found that the galvanic replacement reaction only occurred when using RuCl3 as the precursor, and forming the product of Ag-Ru nanocages. While using Ru(acac)3 as the precursor, Ag@Ru core@shell nanocubes were obtained. In addition, we found that the galvanic replacement reaction could be induced when using Ru(acac)3 as the precursor by adding halogen ions into the reaction. eventually occur the galvanic replacement reaction. In this case, Ag-Ru nanocages could also be obtained.

    第一章 介紹 1 1-1 鹵素離子在奈米粒子合成中之應用 1 1-2 釕金屬與中空結構的應用 5 1-3 合成中空結構的方法介紹 8 1-3-1 氧化蝕刻法 8 1-3-2 柯肯德爾效應(Kirkendall effect) 8 1-3-3 伽凡尼電置換反應 10 1-4 磊晶成長與核殼結構 11 1-5 實驗動機 12 1-6 參考資料 14 第二章 合成銀釕奈米籠 15 2-1 介紹 15 2-2 藥品 16 2-3 儀器 17 2-4 實驗步驟 18 2-4-1 製備銀奈米立方體 18 2-4-2 以伽凡尼電置換反應製備銀釕奈米籠 19 2-4-2-1 以RuCl3 為前驅物 19 2-4-2-2 以Ru(acac)3 為前驅物 19 2-4-3 製備銀釕核殼奈米立方體 20 2-4-4 以氧化蝕法製備銀釕奈米籠 21 2-4-5 對硝基苯酚還原催化實驗 21 2-5 結果與討論 22 2-5-1 銀釕奈米籠之結構鑑定 22 2-5-2 反應機制探討 25 2-5-3 銀釕核殼結構之鑑定 32 2-5-4 伽凡尼電置換反應與與氧化蝕刻法製備之奈米籠之比較 36 2-6 結論 40 2-7 參考資料 42

    第一章
    1. Sandeep, Ghosh; Liberato, Manna, Chem. Rev., 2018, 118 , 7804 –7864.
    2. Samuel, E. Lohse et al., Chem. Mater., 2014, 26 , 34 – 43.
    3. Michael, H. Huang; Chun-Ya, Chiu, J. Mater. Chem. A, 2013, 1, 8081 – 8092.
    4. Younan, Xia et al., Adv. Funct. Mater., 2009, 19, 189 – 200.
    5. Kamran, Qadir et al., Nano Lett., 2012, 12, 5761–5768.
    6. Zhikun, Peng et al., ACS Appl. Energy Mater., 2018, 1, 4277 – 4284.
    7. Yasunori, Inoue et al., ACS Catal., 2016, 6, 7577 – 7584.
    8. Ming, Zhao et al., Nano Lett., 2016, 16, 5310 − 5317.
    9. Ming, Zhao et al., Chem. Mater., 2017, 29, 9227 − 9237.
    10. Ming, Zhao et al., ACS Catal., 2018 , 88, 6948 − 6960.
    11. Jumei, Li et al., J. Am. Chem. Soc., 2015, 137, 7039 – 7042.
    12. Justin, G. Railsback et al., Nano Lett., 2016, 16, 6644 – 6649.
    13. Xiao hu, Xia et al., Adv. Mater., 2013, 25, 6313 – 6333.
    14. Younan, Xia et al., Chem. Rev., 2016, 116, 10414 – 10472.
    15. M. H. Nemati Sabanci University.
    16. Bauer, Ernst., Zeitschrift für Kristallographie, 1958, 110, 372–394.
    第二章
    1. Siekkinen, A.R. et al., Chem. Phys. Lett., 2006, 432, 491– 496.
    2. Anup, L. Dadlani et al., Phys. Chem. C, 2014, 118, 24827– 24832.
    3. Han, Changcun et al., J. Mater. Chem. A., 2014. 2. 1039.
    4. Shan Zhou et al., J. Mater. Chem. C, 2018, 6, 1384 – 1392.
    5. Jaewan, Ahn et al., ACS Nano, 2018, 12, 298–307.
    6. Waynie, M. Schuette and William, E. Buhro, ACS Nano, 2013, 7 , 3844 – 3853.
    7. Kohei, Kusada et al., J. Am. Chem. Soc., 2013, 135, 5493–5496.
    8. Jian-Li, Mi et al., J. Phys. Chem. C, 2014, 118, 11104–11110.
    9. Kohantorabia, Mona and Reza Gholami, Mohammad, New J. Chem., 2017, 41, 10948-10958.

    下載圖示 校內:2025-07-28公開
    校外:2025-07-28公開
    QR CODE