簡易檢索 / 詳目顯示

研究生: 江浩寧
Chiang, Hao-Ning
論文名稱: 壓電致動刀具載台之設計分析及其在類銑削加工上之應用
The design and analysis of a piezo-driven tool stage and its application in pseudo-milling process.
指導教授: 王俊志
Wang, J-J Junz
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 63
中文關鍵詞: 類銑削振動切削壓電元件系統識別PID控制
外文關鍵詞: PID control, system identification, piezo-component, vibrational cutting, pseudo-milling.
相關次數: 點閱:90下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文主要在設計一搭配壓電次系統之刀具載台,並整合現有次微米微動線性平台及旋轉平台組成的桌上型工具機,利用壓電驅動產生二維振動創造出一無須旋轉主軸之類銑削的加工方式,並針對Cu-2600 H04、Al-6061 T6及POM三種材料進行振動切削加工實驗並對加工結果做初步的探討與分析。
      在針對現有之桌上型工具機及壓電驅動刀具載台進行動態系統識別後,利用PID控制來改善利用壓電驅動之刀具路徑精度及頻寬,並探討在不同的振動頻率及振幅下之系統特性。最後配合刀具軌跡模式的建立進行切削實驗,比較在不同的頻率、切深變化量、進給下工件表面粗糙度及波紋幾何特徵,並討論加工參數對振動切削的影響。

      This thesis is to design a piezo-driven tool stage integrated with present sub-micro linear motor stages and rotary stage. A new machining mechanism with no rotary spindle and 2D piezo-driven “pseudo-milling” was presented. Then, the machining phenomenon of Cu-2600 H04, Al-6061 T6 and POM in pseudo-milling process were analyzed and discussed.
      Based on the dynamic system identification of the present machine tool and the piezo-driven tool stage, the piezo-driven cutting tool path and the system bandwidth were improved by PID control. Then, the full system characteristic was found and conferred with different input voltage frequency and amplitude in the experiment. Finally, the results of the cutting experiment showed the influences of various cutting parameters such as input voltage frequency, cutting depth or feed to the surface roughness and surface geometry.

    中文摘要 I 英文摘要 II 誌謝 III 總目錄 IV 表目錄 VIII 圖目錄  IX 符號說明 XII 第一章 序論 1 1.1 研究動機 1 1.2 文獻回顧 1 1.2.1 振動切削 1 1.2.2 系統閉迴路控制法則  4 1.3 論文架構 6 第二章 壓電振動切削 8 2.1 前言 8 2.2 壓電效應 8 2.3 壓電致動器的特性與應用 9 2.3.1 壓電致動器的特性  9 2.3.2 壓電致動加工  10 2.3.3 壓電致動一維振動切削 11 2.3.4 壓電致動二維振動切削 12 2.4 結論 13 第三章 系統識別與控制 15 3.1 系統識別 15 3.1.1 系統方塊圖 15 3.1.2 壓電次系統 16  3.1.3 機械次系統  19 3.2 完整系統之轉移函數及PID控制 21 3.2.1控制系統的設計與補償  21 3.2.2 PID控制器之設計  22 3.2.2.1 完整系統在x軸向上的控制器參數設計  23 3.2.2.2 完整系統在y軸向上的控制器參數設計  25 3.3 完整系統結合PID控制結果  26 3.3.1 PID控制在x軸上控制前後的差異 27 3.3.2 PID控制在y軸上控制前後的差異  29 3.4結論  30 第四章 振動輔助加工實驗 32 4.1 實驗目的 32 4.2 實驗設備 32 4.3 一維振動切削實驗 35 4.3.1 一維振動切削Cu-2600實驗 36 4.3.2一維振動切削POM實驗  38 4.4 二維振動切削實驗 40 4.4.1 碳化鎢刀具二維振動切削加工實驗 41 4.4.1.1 加工對象:Cu-2600  41 4.4.1.2 加工對象:Al-6061  43 4.4.1.3 加工對象:POM 45 4.4.2 單晶鑽刀具二維振動切削加工實驗 47 4.4.2.1 加工對象:Cu-2600  47 4.4.2.2 加工對象:Al-6061  49 4.4.2.3 加工對象:POM 51 4.5 工件材料特性分析 53 4.6 結論 55 第五章 結論與建議 58 5.1 結論 58 5.2 建議 59 參考文獻 60 自述 63

    1. Shamoto, E. and Moriwaki, T., “Ultraprecision Diamond Cutting of Hardened Steel by Applying Elliptical Vibration Cutting,” Annals of the CIRP, 43(1), 35-38, 1999.
    2. Ikawa, N., Donaldson, R. R., Komanduri, R., König, W., Aachen, T. H., Mckeown, P. A., Moriwaki, T., and Stowers, I. F., “Ultraprecision Metal Cutting-The Past, the Present and the Future,” Annals of the CIRP, 40, pp. 587-594, 1991.
    3. Moriwaki, T., Shamoto, E. and Inoue, K., “Ultraprecision Ductile Cutting of Glass by Applying Ultrasonic Vibration,” Annals of the CIRP, 41(1), 141-144, 1992.
    4. Namba, Y. and Abe, M., “Ultraprecision Grinding of Optical Glasses to Produce Super-Smooth Surfaces,” Annals of the CIRP, 42(1), 417-420, 1993.
    5. .Zhou, M., Wang, X. J., Ngoi, B. K. A. and Gan, J. G. K., ”Brittle-ductile Transition in the Diamond Cutting of Glasses with the Aid of Ultrasonic Vibration,” Journal of Materials Processing Technology, 121, 243-251, 2002.
    6. Shamoto, E. and Moriwaki, T., “Study on Elliptical Vibration Cutting,” Annals of the CIRP, 43(1), 35-38, 1994.
    7. Wang, L. J. and Zhao, J., “Influence on Surface Roughness in Turning with Ultrasonic Vibration Tool,” International Journal of Machine Tool and Manufacture, 27(2), 181-190, 1987.
    8. Liu, C. S., Zhao, B. and Jiao, F., ”Research on the Characteristics of the Cutting Force in the Vibration Cutting of a Partical-Reinforced Metal Matrix Composities SiCp/Al,” Journal of Materials Processing Technology, 129, 196-199, 2002.
    9. Moriwaki, T. and Shamoto, E., “Ultraprecision Diamond Turning of Stainless Steel by Ultrasonic Vibration,” Annals of the CIRP, 40(1), 559-562, 1991.
    10. 張淵智,陳國亮, 振動切削技術應用於微銑削之研究, 中國機械工程學會第16屆學術研討會論文集, pp. 515-522, 新竹市國立清華大學, 1999.
    11. Routh Centenary Issue, Int. J. Contr., Vol. 26, No. 2, 1997.
    12. A. Hurwitz, 1964, “Uber die Bedingungen unter welchem eine Gleichung nur Wurzeln mit negativen reellen Teilen besitzt,” Math. Ann., Vol. 46, pp.273-284, 1895.
    13. H. W. Bode, Network Analysis and Feedback Amplifer Design, D. Van Nostrand, New York, 1945.
    14. J. J. D’Azzo and C.H. Houpis, Linear Control System Analysis and Design, McGraw-Hill, New York, 1975.
    15.Ziegler, J. G. and Nichols, N. B., Optimum setting for automatic controllers. ASME Trans., 63, 759-768, 1942.
    16. YUWANA, M., and SEBORG, D. E., A new method for on-line controller tuning. AIChE Journal, 28, 434-440, 1982.
    17. Chien, I.-L., IMC-PID controller design - an extension. Proceedings of the IFAC Adaptive Control of Chemical Processes Conference, Copenhagen, Denmark, 147-152, 1988.
    18.Metals Handbook tenth edition vol.2, ASM International Handbook Committee, 1990

    下載圖示 校內:立即公開
    校外:2004-07-30公開
    QR CODE