| 研究生: |
謝鍺渠 Hsieh, Chu-Che |
|---|---|
| 論文名稱: |
混合型次波長兆赫波導特性與感測應用 Characterization and Sensing Applications of a Hybrid Subwavelength Terahertz Waveguide |
| 指導教授: |
呂佳諭
Lu, Ja-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 兆赫波 、波導 、光學感測 、整合光學 |
| 外文關鍵詞: | Terahertz wave, Waveguide, Optical sensing, Integrated optics |
| 相關次數: | 點閱:269 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文成功展示混合型次波長波導於兆赫頻段,構成波導的介質層包括塑膠線、高分子彩帶與一維金屬週期結構,每一種結構層的截面尺寸,均小於兆赫波繞射極限尺寸,其個別傳輸兆赫波的波導特徵,均以次波長波導模態,形成強而明顯的消逝場於波導核心外的空氣披覆層,此兆赫次波長波導具有長距離傳輸與線性極化兩大特色,是目前兆赫科技實現波導技術最重要的方法,此論文使用已經發表的兆赫次波長波導介質,包括聚乙烯(Polyethylene, PE)塑膠線、聚偏二氟乙烯(polyvinylidene fluoride, PVDF)高分子彩帶以及一維金屬週期狹縫結構等。為了實現混合型次波長波導,此論文探討整合所需之空間配置與參數,包括金屬薄膜整合PE線、PVDF彩帶整合PE線、PVDF彩帶與金屬薄膜整合PE線、薄膜整合金屬週期結構等;研究結果發現,PE線整合金屬薄膜,並操作在橫向磁波模態(Transverse Magnetic, TM, mode)的條件,整合PVDF彩帶可以展現最高的感測靈敏度,此論文以葡萄糖分子校準此混合型波導之感測表現,所能感測到的最低葡萄糖分子數量為2.3 nmol/mm2。依據此PE線為基礎的兆赫次波長混合波導,此論文成功實現孔隙薄膜感測與抗體-抗原生物分子感測等應用,以聚醯亞胺(Polyimide, PI)孔隙薄膜為例,最小可解析感測光程為1.626 μm-RIU,經由等效介質理論模型,推算薄膜的物理厚度與折射率,其誤差分別為17.44 %和6.6 %;此外,以聚乙二醇單甲醚-生物素(mPEG-Biotin)之抗體分子、鍊親和素(Streptavidin)之抗原為例,感測抗體複合前、後的最小可解析分子變化量,分別為91.9 pmol/mm2和18.1 pmol/mm2。其中,孔隙薄膜感測將提供兆赫通訊元件的基板檢測,而抗體-抗原生物分子感測,將提供未來生物醫藥偵測平台,可以輕易結合兆赫波微量感測技術與光學顯微鏡,使用顯微鏡過程就可以從兆赫波訊號得知分子間結合力的存在,解決目前兆赫波微量感測無法整合光學顯微鏡的窘境。
Two types of hybrid subwavelength waveguides are successfully demonstrated in the thesis for optical sensing via terahertz electromagnetic waves. One is the ribbon-integrated-wire waveguide and the other one is the superstrate-integrated periodic metal waveguide. The thesis investigation indicates that their sensing mechanisms are different. The ribbon-integrated-wire waveguide realizes optical sensing based on the fundamental of a waveguide coupling effect. For the superstrate-integrated periodic metal waveguide, its sensing mechanism follows the refractive-index-sensitive Bragg resonance. Both the integrated elements of a ribbon and a substrate can be operated as sample adsorbers to achieve optical sensing purpose because of their nano-porous and hydrophilic features. The glucose is used as a standard molecule to optimize the engineering parameters of waveguide cores in the two waveguide sensing schemes. The thesis investigation presents that the plastic wire core with a specific metal-thin-film surface is critical to enhance the sensing ability because the wire-guided terahertz field can be modified to match the transverse-magnetic mode of a ribbon that is loaded with a sample. Furthermore, such the wire waveguide scheme has a higher sensitivity than that of a periodic metal waveguide around 386%. Finally, the waveguide sensing scheme of a ribbon-integrated-wire waveguide realizes optical sensing to recognize porosity and antibody-antigen molecules on the polymer layers.
[1] K. P. Cheung and D. H. Auston, “Excitation of Coherent Phonon Polaritons with Femtosecond Optical Pulses,” Phys. Rev. Lett., vol. 55, no. 20, pp. 2152-2155, 11/11/ 1985, doi: 10.1103/PhysRevLett.55.2152.
[2] A. P. DeFonzo, M. Jarwala, and C. Lutz, “Transient response of planar integrated optoelectronic antennas,” Appl. Phys. Lett., vol. 50, no. 17, pp. 1155-1157, 1987/04/27 1987, doi: 10.1063/1.97947.
[3] B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater., vol. 1, no. 1, pp. 26-33, 2002/09/01 2002, doi: 10.1038/nmat708.
[4] J.-Y. Lu et al., “Terahertz scanning imaging with a subwavelength plastic fiber,” Appl. Phys. Lett., vol. 92, no. 8, p. 084102, 2008/02/25 2008, doi: 10.1063/1.2816122.
[5] B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol., vol. 47, no. 21, pp. 3807-3814, 2002/10/16 2002, doi: 10.1088/0031-9155/47/21/319.
[6] P. C. Upadhya, Y. C. Shen, A. G. Davies, and E. H. Linfield, “Far-infrared vibrational modes of polycrystalline saccharides,” Vib. Spectrosc., vol. 35, no. 1, pp. 139-143, 2004/06/17/ 2004, doi: https://doi.org/10.1016/j.vibspec.2003.12.010.
[7] W. Withayachumnankul, J. F. O’Hara, W. Cao, I. Al-Naib, and W. Zhang, “Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy,” Opt. Express, vol. 22, no. 1, pp. 972-986, 2014/01/13 2014, doi: 10.1364/OE.22.000972.
[8] M. Beruete and I. Jáuregui-López, “Terahertz Sensing Based on Metasurfaces,” Adv. Opt. Mater., https://doi.org/10.1002/adom.201900721 vol. 8, no. 3, p. 1900721, 2020/02/01 2020, doi: https://doi.org/10.1002/adom.201900721.
[9] S. P. Mickan, R. Shvartsman, J. Munch, X.-C. Zhang, and D. Abbott, “Low noise laser-based T-ray spectroscopy of liquids using double-modulated differential time-domain spectroscopy,” J. Opt. B-Quantum Semicl. Opt., vol. 6, no. 8, pp. S786-S795, 2004/07/28 2004, doi: 10.1088/1464-4266/6/8/025.
[10] Z. Jiang, M. Li, and X. C. Zhang, “Dielectric constant measurement of thin films by differential time-domain spectroscopy,” Appl. Phys. Lett., vol. 76, no. 22, pp. 3221-3223, 2000/05/29 2000, doi: 10.1063/1.126587.
[11] L. Zhang, Y. Liang, and D. Niyato, “6G Visions: Mobile ultra-broadband, super internet-of-things, and artificial intelligence,” China Commun., vol. 16, no. 8, pp. 1-14, 2019, doi: 10.23919/JCC.2019.08.001.
[12] L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett., vol. 31, no. 3, pp. 308-310, 2006/02/01 2006, doi: 10.1364/OL.31.000308.
[13] A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express, vol. 16, no. 9, pp. 6340-6351, 2008/04/28 2008, doi: 10.1364/OE.16.006340.
[14] C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-j. Huang, H.-c. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett., vol. 34, no. 21, pp. 3457-3459, 2009/11/01 2009, doi: 10.1364/OL.34.003457.
[15] C. Yeh, F. Shimabukuro, and P. H. Siegel, “Low-loss terahertz ribbon waveguides,” Appl. Optics, vol. 44, no. 28, pp. 5937-5946, 2005/10/01 2005, doi: 10.1364/AO.44.005937.
[16] K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature, vol. 432, no. 7015, pp. 376-379, 2004/11/01 2004, doi: 10.1038/nature03040.
[17] R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett., vol. 26, no. 11, pp. 846-848, 2001/06/01 2001, doi: 10.1364/OL.26.000846.
[18] J. W. Digby et al., “Fabrication and characterization of micromachined rectangular waveguide components for use at millimeter-wave and terahertz frequencies,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 8, pp. 1293-1302, 2000, doi: 10.1109/22.859472.
[19] W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express, vol. 16, no. 9, pp. 6216-6226, 2008/04/28 2008, doi: 10.1364/OE.16.006216.
[20] B. You, T.-A. Liu, J.-L. Peng, C.-L. Pan, and J.-Y. Lu, “A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection,” Opt. Express, vol. 17, no. 23, pp. 20675-20683, 2009/11/09 2009, doi: 10.1364/OE.17.020675.
[21] B. You, J.-Y. Lu, T.-A. Liu, and J.-L. Peng, “Hybrid terahertz plasmonic waveguide for sensing applications,” Opt. Express, vol. 21, no. 18, pp. 21087-21096, 2013/09/09 2013, doi: 10.1364/OE.21.021087.
[22] B. You, J.-Y. Lu, W.-L. Chang, C.-P. Yu, T.-A. Liu, and J.-L. Peng, “Subwavelength confined terahertz waves on planar waveguides using metallic gratings,” Opt. Express, vol. 21, no. 5, pp. 6009-6019, 2013/03/11 2013, doi: 10.1364/OE.21.006009.
[23] B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, and C.-L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett., vol. 96, no. 5, p. 051105, 2010/02/01 2010, doi: 10.1063/1.3279154.
[24] B. You, R. Takaki, C. C. Hsieh, R. Iwasa, J. Y. Lu, and T. Hattori, “Terahertz Bragg Resonator Based on a Mechanical Assembly of Metal Grating and Metal Waveguide,” J. Lightwave Technol., vol. 38, no. 14, pp. 3701-3709, 2020, doi: 10.1109/JLT.2020.2973247.
[25] K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev., vol. 111, no. 6, pp. 3828-3857, 2011/06/08 2011, doi: 10.1021/cr100313v.
[26] B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express, vol. 19, no. 26, pp. B848-B861, 2011/12/12 2011, doi: 10.1364/OE.19.00B848.
[27] L. Tong et al., “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature, vol. 426, no. 6968, pp. 816-819, 2003/12/01 2003, doi: 10.1038/nature02193.
[28] X. Chun, W. Wen-jie, Z. Wen-yu, M. Si-ye, W. Ze-yu, and Q. Jia-xin, “Structure of terahertz fibers and their applications,” in Proc.SPIE, 2019, vol. 11340, doi: 10.1117/12.2544254. [Online]. Available: https://doi.org/10.1117/12.2544254
[29] H.-W. Chen et al., “Subwavelength Dielectric-Fiber-Based THz Coupler,” J. Lightwave Technol., vol. 27, no. 11, pp. 1489-1495, 2009/06/01 2009. [Online]. Available: http://jlt.osa.org/abstract.cfm?URI=jlt-27-11-1489.
[30] J. Neu and C. A. Schmuttenmaer, “Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS),” J. Appl. Phys., vol. 124, no. 23, p. 231101, 2018/12/21 2018, doi: 10.1063/1.5047659.
[31] A. Azad, J. O Hara, R. Singh, H. Chen, and A. J. Taylor, “A review of terahertz plasmonics in subwavelength holes on conducting films,” IEEE J. Sel. Top. Quant. Electron., vol. 19, pp. 8400416-8400416, 2013.
[32] S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics, vol. 5, no. 2, pp. 169-215, 2013/06/30 2013, doi: 10.1364/AOP.5.000169.
[33] X. Zhang et al., “Terahertz surface plasmonic waves: a review,” Advanced Photonics, vol.2,no.1,p.014001,2020.[Online].Available:https://doi.org/10.1117/1.AP.2.1.014001.
[34] J. Liu, Z. U. Khan, and S. Sarjoghian, “Layered THz waveguides for SPPs, filter and sensor applications,” J. Opt., vol. 48, no. 4, pp. 567-581, 2019/12/01 2019, doi: 10.1007/s12596-019-00569-3.
[35] K. Wynne, J. J. Carey, J. Zawadzka, and D. A. Jaroszynski, “Tunneling of single-cycle terahertz pulses through waveguides,” Opt. Commun., vol. 176, no. 4, pp. 429-435, 2000/04/01/ 2000, doi: https://doi.org/10.1016/S0030-4018(00)00542-3.
[36] M. Navarro-Cía, M. Beruete, F. Falcone, M. Sorolla, and V. Lomakin, “Negative group delay through subwavelength hole arrays,” Phys. Rev. B, vol. 84, no. 7, p. 075151, 08/12/ 2011, doi: 10.1103/PhysRevB.84.075151.
[37] E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett., vol. 97, no. 18, p. 181112, 2010/11/01 2010, doi: 10.1063/1.3514558.
[38] Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc., vol. 49, no. 2, pp. 513-517, 2006. [Online]. Available: http://inis.iaea.org/search/search.aspx?orig_q=RN:43010908.
[39] J. Li, H. Qu, and J. Wang, “Photonic Bragg waveguide platform for multichannel resonant sensing applications in the THz range,” Biomed. Opt. Express, vol. 11, no. 5, pp. 2476-2489, 2020/05/01 2020, doi: 10.1364/BOE.390100.
[40] V. E. Ogbonna, A. P. I. Popoola, O. M. Popoola, and S. O. Adeosun, “A review on polyimide reinforced nanocomposites for mechanical, thermal, and electrical insulation application: challenges and recommendations for future improvement,” Polym. Bull., 2020/11/20 2020, doi: 10.1007/s00289-020-03487-8.
[41] A. Pan, “Fused nanocrystal thin film semiconductor and method,” ed: Google Patents, 2009.
[42] L. Mädler, A. Lall, and S. Friedlander, “One-step aerosol synthesis of nanoparticle agglomerate films: Simulation of film porosity and thickness,” Nanotechnology, vol. 17, p. 4783, 09/07 2006, doi: 10.1088/0957-4484/17/19/001.
[43] T. Ma, A. Markov, L. Wang, and M. Skorobogatiy, “Graded index porous optical fibers – dispersion management in terahertz range,” Opt. Express, vol. 23, no. 6, pp. 7856-7869, 2015/03/23 2015, doi: 10.1364/OE.23.007856.
[44] P. D. Cunningham et al., “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys., vol. 109, no. 4, pp. 043505-043505-5, 2011/02/15 2011, doi: 10.1063/1.3549120.
[45] B. D. Grant, C. A. Smith, K. Karvonen, and R. Richards-Kortum, “Highly Sensitive Two-Dimensional Paper Network Incorporating Biotin–Streptavidin for the Detection of Malaria,” Anal. Chem., vol. 88, no. 5, pp. 2553-2557, 2016/03/01 2016, doi: 10.1021/acs.analchem.5b03999.
[46] M. Suonpää, E. Markela, T. Ståhlberg, and I. Hemmilä, “Europium-labelled streptavidin as a highly sensitive universal label: Indirect time-resolved immunofluorometry of FSH and TSH,” J. Immunol. Methods, vol. 149, no. 2, pp. 247-253, 1992/01/01/ 1992, doi: https://doi.org/10.1016/0022-1759(92)90256-S.
[47] Z. Li, M. Li, F. Li, and M. Zhang, “Paper-based chemiluminescence enzyme-linked immunosorbent assay enhanced by biotin-streptavidin system for high-sensitivity C-reactive protein detection,” Anal. Biochem., vol. 559, pp. 86-90, 2018/10/15/ 2018, doi: https://doi.org/10.1016/j.ab.2018.08.018.
[48] Y. Ogawa, S. Hayashi, H. Yoshida, C. Otani, and K. Kawase, “Terahertz imaging for label-free protein detection,” in 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves, 21-25 Sept. 2009 2009, pp. 1-2, doi: 10.1109/ICIMW.2009.5324637.
[49] Y.-H. Zhao, Y.-L. Qian, D.-X. Pang, B.-K. Zhu, and Y.-Y. Xu, “Porous membranes modified by hyperbranched polymers II.: Effect of the arm length of amphiphilic hyperbranched-star polymers on the hydrophilicity and protein resistance of poly(vinylidene fluoride) membranes,” J. Membr. Sci., vol. 304, no. 1, pp. 138-147, 2007/11/01/ 2007, doi: https://doi.org/10.1016/j.memsci.2007.07.029.
[50] 曾琬玲, “利用兆赫波塑膠線波導之消逝場實現分子感測應用,” 光電科學與工程研究所碩士論文, 國立成功大學, 2019.
[51] T. Torii, H. Chiba, T. Tanabe, and Y. Oyama, “Measurements of glucose concentration in aqueous solutions using reflected THz radiation for applications to a novel sub-THz radiation non-invasive blood sugar measurement method,” DIGITAL HEALTH, vol. 3, p. 2055207617729534, 2017/01/01 2017, doi: 10.1177/2055207617729534.
[52] Y. Ogawa, S. i. Hayashi, M. Oikawa, C. Otani, and K. Kawase, “Interference terahertz label-free imaging for protein detection on a membrane,” Opt. Express, vol. 16, no. 26, pp. 22083-22089, 2008/12/22 2008, doi: 10.1364/OE.16.022083.
[53] S. P. Mickan et al., “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol., vol. 47, no. 21, pp. 3789-3795, 2002/10/16 2002, doi: 10.1088/0031-9155/47/21/317.
校內:2026-06-03公開