簡易檢索 / 詳目顯示

研究生: 謝鍺渠
Hsieh, Chu-Che
論文名稱: 混合型次波長兆赫波導特性與感測應用
Characterization and Sensing Applications of a Hybrid Subwavelength Terahertz Waveguide
指導教授: 呂佳諭
Lu, Ja-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 97
中文關鍵詞: 兆赫波波導光學感測整合光學
外文關鍵詞: Terahertz wave, Waveguide, Optical sensing, Integrated optics
相關次數: 點閱:269下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文成功展示混合型次波長波導於兆赫頻段,構成波導的介質層包括塑膠線、高分子彩帶與一維金屬週期結構,每一種結構層的截面尺寸,均小於兆赫波繞射極限尺寸,其個別傳輸兆赫波的波導特徵,均以次波長波導模態,形成強而明顯的消逝場於波導核心外的空氣披覆層,此兆赫次波長波導具有長距離傳輸與線性極化兩大特色,是目前兆赫科技實現波導技術最重要的方法,此論文使用已經發表的兆赫次波長波導介質,包括聚乙烯(Polyethylene, PE)塑膠線、聚偏二氟乙烯(polyvinylidene fluoride, PVDF)高分子彩帶以及一維金屬週期狹縫結構等。為了實現混合型次波長波導,此論文探討整合所需之空間配置與參數,包括金屬薄膜整合PE線、PVDF彩帶整合PE線、PVDF彩帶與金屬薄膜整合PE線、薄膜整合金屬週期結構等;研究結果發現,PE線整合金屬薄膜,並操作在橫向磁波模態(Transverse Magnetic, TM, mode)的條件,整合PVDF彩帶可以展現最高的感測靈敏度,此論文以葡萄糖分子校準此混合型波導之感測表現,所能感測到的最低葡萄糖分子數量為2.3 nmol/mm2。依據此PE線為基礎的兆赫次波長混合波導,此論文成功實現孔隙薄膜感測與抗體-抗原生物分子感測等應用,以聚醯亞胺(Polyimide, PI)孔隙薄膜為例,最小可解析感測光程為1.626 μm-RIU,經由等效介質理論模型,推算薄膜的物理厚度與折射率,其誤差分別為17.44 %和6.6 %;此外,以聚乙二醇單甲醚-生物素(mPEG-Biotin)之抗體分子、鍊親和素(Streptavidin)之抗原為例,感測抗體複合前、後的最小可解析分子變化量,分別為91.9 pmol/mm2和18.1 pmol/mm2。其中,孔隙薄膜感測將提供兆赫通訊元件的基板檢測,而抗體-抗原生物分子感測,將提供未來生物醫藥偵測平台,可以輕易結合兆赫波微量感測技術與光學顯微鏡,使用顯微鏡過程就可以從兆赫波訊號得知分子間結合力的存在,解決目前兆赫波微量感測無法整合光學顯微鏡的窘境。

    Two types of hybrid subwavelength waveguides are successfully demonstrated in the thesis for optical sensing via terahertz electromagnetic waves. One is the ribbon-integrated-wire waveguide and the other one is the superstrate-integrated periodic metal waveguide. The thesis investigation indicates that their sensing mechanisms are different. The ribbon-integrated-wire waveguide realizes optical sensing based on the fundamental of a waveguide coupling effect. For the superstrate-integrated periodic metal waveguide, its sensing mechanism follows the refractive-index-sensitive Bragg resonance. Both the integrated elements of a ribbon and a substrate can be operated as sample adsorbers to achieve optical sensing purpose because of their nano-porous and hydrophilic features. The glucose is used as a standard molecule to optimize the engineering parameters of waveguide cores in the two waveguide sensing schemes. The thesis investigation presents that the plastic wire core with a specific metal-thin-film surface is critical to enhance the sensing ability because the wire-guided terahertz field can be modified to match the transverse-magnetic mode of a ribbon that is loaded with a sample. Furthermore, such the wire waveguide scheme has a higher sensitivity than that of a periodic metal waveguide around 386%. Finally, the waveguide sensing scheme of a ribbon-integrated-wire waveguide realizes optical sensing to recognize porosity and antibody-antigen molecules on the polymer layers.

    Chapter 1 簡介 1 Chapter 2 混合型次波長波導特性與感測 4 2.1 前言 4 2.2 量測系統與方法 5 2.3 波導傳輸參數定義 7 2.4 金屬薄膜整合塑膠線波導之兆赫波傳輸特性 8 2.4.1 波導結構與量測示意圖 8 2.4.2 波導樣品 10 2.4.3 量測結果 12 2.4.4 分析與討論 16 2.5 彩帶波導整合線波導之兆赫波傳輸特性 23 2.5.1 波導光學配置、量測示意圖與參數 23 2.5.2 比較PE線與PVDF彩帶之兆赫波導傳輸差異 25 2.5.3 觀察與分析兆赫波導耦合係數頻譜 28 2.6 彩帶波導、金屬薄膜整合線波導之兆赫波傳輸特性 36 2.6.1 波導光學配置、量測示意圖與參數 36 2.6.2 觀察與量測結果 38 2.6.3 彩帶波導結合葡萄糖分子 41 2.7 薄膜整合金屬週期結構波導之兆赫波傳輸特性 51 2.7.1 金屬週期波導結構與參數 51 2.7.2 金屬週期波導樣品 53 2.7.3 金屬週期波導量測結果 54 2.7.4 薄膜整合金屬週期波導 59 2.7.5 薄膜波導厚度對布拉格頻率的影響 60 2.7.6 薄膜結合葡萄糖分子 65 Chapter 3 混合型次波長波導感測應用 70 3.1 前言 70 3.2 多孔隙薄膜感測應用 71 3.2.1 薄膜材料介紹 71 3.2.2 波導等效折射係數與感測模型 72 3.2.3 實驗結果 74 3.2.4 分析與討論 75 3.3 抗體-抗原生物分子感測應用 81 3.3.1 生物樣品介紹 81 3.3.2 實驗結果 82 3.3.3 分析與討論 86 Chapter 4 結論與未來展望 89 Reference 92

    [1] K. P. Cheung and D. H. Auston, “Excitation of Coherent Phonon Polaritons with Femtosecond Optical Pulses,” Phys. Rev. Lett., vol. 55, no. 20, pp. 2152-2155, 11/11/ 1985, doi: 10.1103/PhysRevLett.55.2152.
    [2] A. P. DeFonzo, M. Jarwala, and C. Lutz, “Transient response of planar integrated optoelectronic antennas,” Appl. Phys. Lett., vol. 50, no. 17, pp. 1155-1157, 1987/04/27 1987, doi: 10.1063/1.97947.
    [3] B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater., vol. 1, no. 1, pp. 26-33, 2002/09/01 2002, doi: 10.1038/nmat708.
    [4] J.-Y. Lu et al., “Terahertz scanning imaging with a subwavelength plastic fiber,” Appl. Phys. Lett., vol. 92, no. 8, p. 084102, 2008/02/25 2008, doi: 10.1063/1.2816122.
    [5] B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol., vol. 47, no. 21, pp. 3807-3814, 2002/10/16 2002, doi: 10.1088/0031-9155/47/21/319.
    [6] P. C. Upadhya, Y. C. Shen, A. G. Davies, and E. H. Linfield, “Far-infrared vibrational modes of polycrystalline saccharides,” Vib. Spectrosc., vol. 35, no. 1, pp. 139-143, 2004/06/17/ 2004, doi: https://doi.org/10.1016/j.vibspec.2003.12.010.
    [7] W. Withayachumnankul, J. F. O’Hara, W. Cao, I. Al-Naib, and W. Zhang, “Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy,” Opt. Express, vol. 22, no. 1, pp. 972-986, 2014/01/13 2014, doi: 10.1364/OE.22.000972.
    [8] M. Beruete and I. Jáuregui-López, “Terahertz Sensing Based on Metasurfaces,” Adv. Opt. Mater., https://doi.org/10.1002/adom.201900721 vol. 8, no. 3, p. 1900721, 2020/02/01 2020, doi: https://doi.org/10.1002/adom.201900721.
    [9] S. P. Mickan, R. Shvartsman, J. Munch, X.-C. Zhang, and D. Abbott, “Low noise laser-based T-ray spectroscopy of liquids using double-modulated differential time-domain spectroscopy,” J. Opt. B-Quantum Semicl. Opt., vol. 6, no. 8, pp. S786-S795, 2004/07/28 2004, doi: 10.1088/1464-4266/6/8/025.
    [10] Z. Jiang, M. Li, and X. C. Zhang, “Dielectric constant measurement of thin films by differential time-domain spectroscopy,” Appl. Phys. Lett., vol. 76, no. 22, pp. 3221-3223, 2000/05/29 2000, doi: 10.1063/1.126587.
    [11] L. Zhang, Y. Liang, and D. Niyato, “6G Visions: Mobile ultra-broadband, super internet-of-things, and artificial intelligence,” China Commun., vol. 16, no. 8, pp. 1-14, 2019, doi: 10.23919/JCC.2019.08.001.
    [12] L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett., vol. 31, no. 3, pp. 308-310, 2006/02/01 2006, doi: 10.1364/OL.31.000308.
    [13] A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express, vol. 16, no. 9, pp. 6340-6351, 2008/04/28 2008, doi: 10.1364/OE.16.006340.
    [14] C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-j. Huang, H.-c. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett., vol. 34, no. 21, pp. 3457-3459, 2009/11/01 2009, doi: 10.1364/OL.34.003457.
    [15] C. Yeh, F. Shimabukuro, and P. H. Siegel, “Low-loss terahertz ribbon waveguides,” Appl. Optics, vol. 44, no. 28, pp. 5937-5946, 2005/10/01 2005, doi: 10.1364/AO.44.005937.
    [16] K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature, vol. 432, no. 7015, pp. 376-379, 2004/11/01 2004, doi: 10.1038/nature03040.
    [17] R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett., vol. 26, no. 11, pp. 846-848, 2001/06/01 2001, doi: 10.1364/OL.26.000846.
    [18] J. W. Digby et al., “Fabrication and characterization of micromachined rectangular waveguide components for use at millimeter-wave and terahertz frequencies,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 8, pp. 1293-1302, 2000, doi: 10.1109/22.859472.
    [19] W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express, vol. 16, no. 9, pp. 6216-6226, 2008/04/28 2008, doi: 10.1364/OE.16.006216.
    [20] B. You, T.-A. Liu, J.-L. Peng, C.-L. Pan, and J.-Y. Lu, “A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection,” Opt. Express, vol. 17, no. 23, pp. 20675-20683, 2009/11/09 2009, doi: 10.1364/OE.17.020675.
    [21] B. You, J.-Y. Lu, T.-A. Liu, and J.-L. Peng, “Hybrid terahertz plasmonic waveguide for sensing applications,” Opt. Express, vol. 21, no. 18, pp. 21087-21096, 2013/09/09 2013, doi: 10.1364/OE.21.021087.
    [22] B. You, J.-Y. Lu, W.-L. Chang, C.-P. Yu, T.-A. Liu, and J.-L. Peng, “Subwavelength confined terahertz waves on planar waveguides using metallic gratings,” Opt. Express, vol. 21, no. 5, pp. 6009-6019, 2013/03/11 2013, doi: 10.1364/OE.21.006009.
    [23] B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, and C.-L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett., vol. 96, no. 5, p. 051105, 2010/02/01 2010, doi: 10.1063/1.3279154.
    [24] B. You, R. Takaki, C. C. Hsieh, R. Iwasa, J. Y. Lu, and T. Hattori, “Terahertz Bragg Resonator Based on a Mechanical Assembly of Metal Grating and Metal Waveguide,” J. Lightwave Technol., vol. 38, no. 14, pp. 3701-3709, 2020, doi: 10.1109/JLT.2020.2973247.
    [25] K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev., vol. 111, no. 6, pp. 3828-3857, 2011/06/08 2011, doi: 10.1021/cr100313v.
    [26] B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express, vol. 19, no. 26, pp. B848-B861, 2011/12/12 2011, doi: 10.1364/OE.19.00B848.
    [27] L. Tong et al., “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature, vol. 426, no. 6968, pp. 816-819, 2003/12/01 2003, doi: 10.1038/nature02193.
    [28] X. Chun, W. Wen-jie, Z. Wen-yu, M. Si-ye, W. Ze-yu, and Q. Jia-xin, “Structure of terahertz fibers and their applications,” in Proc.SPIE, 2019, vol. 11340, doi: 10.1117/12.2544254. [Online]. Available: https://doi.org/10.1117/12.2544254
    [29] H.-W. Chen et al., “Subwavelength Dielectric-Fiber-Based THz Coupler,” J. Lightwave Technol., vol. 27, no. 11, pp. 1489-1495, 2009/06/01 2009. [Online]. Available: http://jlt.osa.org/abstract.cfm?URI=jlt-27-11-1489.
    [30] J. Neu and C. A. Schmuttenmaer, “Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS),” J. Appl. Phys., vol. 124, no. 23, p. 231101, 2018/12/21 2018, doi: 10.1063/1.5047659.
    [31] A. Azad, J. O Hara, R. Singh, H. Chen, and A. J. Taylor, “A review of terahertz plasmonics in subwavelength holes on conducting films,” IEEE J. Sel. Top. Quant. Electron., vol. 19, pp. 8400416-8400416, 2013.
    [32] S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics, vol. 5, no. 2, pp. 169-215, 2013/06/30 2013, doi: 10.1364/AOP.5.000169.
    [33] X. Zhang et al., “Terahertz surface plasmonic waves: a review,” Advanced Photonics, vol.2,no.1,p.014001,2020.[Online].Available:https://doi.org/10.1117/1.AP.2.1.014001.
    [34] J. Liu, Z. U. Khan, and S. Sarjoghian, “Layered THz waveguides for SPPs, filter and sensor applications,” J. Opt., vol. 48, no. 4, pp. 567-581, 2019/12/01 2019, doi: 10.1007/s12596-019-00569-3.
    [35] K. Wynne, J. J. Carey, J. Zawadzka, and D. A. Jaroszynski, “Tunneling of single-cycle terahertz pulses through waveguides,” Opt. Commun., vol. 176, no. 4, pp. 429-435, 2000/04/01/ 2000, doi: https://doi.org/10.1016/S0030-4018(00)00542-3.
    [36] M. Navarro-Cía, M. Beruete, F. Falcone, M. Sorolla, and V. Lomakin, “Negative group delay through subwavelength hole arrays,” Phys. Rev. B, vol. 84, no. 7, p. 075151, 08/12/ 2011, doi: 10.1103/PhysRevB.84.075151.
    [37] E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett., vol. 97, no. 18, p. 181112, 2010/11/01 2010, doi: 10.1063/1.3514558.
    [38] Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc., vol. 49, no. 2, pp. 513-517, 2006. [Online]. Available: http://inis.iaea.org/search/search.aspx?orig_q=RN:43010908.
    [39] J. Li, H. Qu, and J. Wang, “Photonic Bragg waveguide platform for multichannel resonant sensing applications in the THz range,” Biomed. Opt. Express, vol. 11, no. 5, pp. 2476-2489, 2020/05/01 2020, doi: 10.1364/BOE.390100.
    [40] V. E. Ogbonna, A. P. I. Popoola, O. M. Popoola, and S. O. Adeosun, “A review on polyimide reinforced nanocomposites for mechanical, thermal, and electrical insulation application: challenges and recommendations for future improvement,” Polym. Bull., 2020/11/20 2020, doi: 10.1007/s00289-020-03487-8.
    [41] A. Pan, “Fused nanocrystal thin film semiconductor and method,” ed: Google Patents, 2009.
    [42] L. Mädler, A. Lall, and S. Friedlander, “One-step aerosol synthesis of nanoparticle agglomerate films: Simulation of film porosity and thickness,” Nanotechnology, vol. 17, p. 4783, 09/07 2006, doi: 10.1088/0957-4484/17/19/001.
    [43] T. Ma, A. Markov, L. Wang, and M. Skorobogatiy, “Graded index porous optical fibers – dispersion management in terahertz range,” Opt. Express, vol. 23, no. 6, pp. 7856-7869, 2015/03/23 2015, doi: 10.1364/OE.23.007856.
    [44] P. D. Cunningham et al., “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys., vol. 109, no. 4, pp. 043505-043505-5, 2011/02/15 2011, doi: 10.1063/1.3549120.
    [45] B. D. Grant, C. A. Smith, K. Karvonen, and R. Richards-Kortum, “Highly Sensitive Two-Dimensional Paper Network Incorporating Biotin–Streptavidin for the Detection of Malaria,” Anal. Chem., vol. 88, no. 5, pp. 2553-2557, 2016/03/01 2016, doi: 10.1021/acs.analchem.5b03999.
    [46] M. Suonpää, E. Markela, T. Ståhlberg, and I. Hemmilä, “Europium-labelled streptavidin as a highly sensitive universal label: Indirect time-resolved immunofluorometry of FSH and TSH,” J. Immunol. Methods, vol. 149, no. 2, pp. 247-253, 1992/01/01/ 1992, doi: https://doi.org/10.1016/0022-1759(92)90256-S.
    [47] Z. Li, M. Li, F. Li, and M. Zhang, “Paper-based chemiluminescence enzyme-linked immunosorbent assay enhanced by biotin-streptavidin system for high-sensitivity C-reactive protein detection,” Anal. Biochem., vol. 559, pp. 86-90, 2018/10/15/ 2018, doi: https://doi.org/10.1016/j.ab.2018.08.018.
    [48] Y. Ogawa, S. Hayashi, H. Yoshida, C. Otani, and K. Kawase, “Terahertz imaging for label-free protein detection,” in 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves, 21-25 Sept. 2009 2009, pp. 1-2, doi: 10.1109/ICIMW.2009.5324637.
    [49] Y.-H. Zhao, Y.-L. Qian, D.-X. Pang, B.-K. Zhu, and Y.-Y. Xu, “Porous membranes modified by hyperbranched polymers II.: Effect of the arm length of amphiphilic hyperbranched-star polymers on the hydrophilicity and protein resistance of poly(vinylidene fluoride) membranes,” J. Membr. Sci., vol. 304, no. 1, pp. 138-147, 2007/11/01/ 2007, doi: https://doi.org/10.1016/j.memsci.2007.07.029.
    [50] 曾琬玲, “利用兆赫波塑膠線波導之消逝場實現分子感測應用,” 光電科學與工程研究所碩士論文, 國立成功大學, 2019.
    [51] T. Torii, H. Chiba, T. Tanabe, and Y. Oyama, “Measurements of glucose concentration in aqueous solutions using reflected THz radiation for applications to a novel sub-THz radiation non-invasive blood sugar measurement method,” DIGITAL HEALTH, vol. 3, p. 2055207617729534, 2017/01/01 2017, doi: 10.1177/2055207617729534.
    [52] Y. Ogawa, S. i. Hayashi, M. Oikawa, C. Otani, and K. Kawase, “Interference terahertz label-free imaging for protein detection on a membrane,” Opt. Express, vol. 16, no. 26, pp. 22083-22089, 2008/12/22 2008, doi: 10.1364/OE.16.022083.
    [53] S. P. Mickan et al., “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol., vol. 47, no. 21, pp. 3789-3795, 2002/10/16 2002, doi: 10.1088/0031-9155/47/21/317.

    無法下載圖示 校內:2026-06-03公開
    校外:2026-06-03公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE