簡易檢索 / 詳目顯示

研究生: 徐世勳
Hsu, Shih-Hsun
論文名稱: 多孔性鎳電極的電化學製備法及其於超高電容器中之應用
Preparation of the porous Ni electrode and its application for supercapacitors
指導教授: 孫亦文
Sun, I -Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 91
中文關鍵詞: 電化學去合金超高電容器錳氧化物多孔性鎳電極選擇性溶解
外文關鍵詞: manganese oxide capacitors, electrode, porous, dealloying, electrochemical
相關次數: 點閱:132下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究從水溶液中以電化學法製備多孔性鎳電極材料並將其應用於錳氧化物型超高電容器。在ITO基材上以電化學法電沈積鎳銅合金後,再於同一鍍液中選擇性溶解鎳銅合金中的銅製備多孔性鎳電極。
    較正的電位下析鍍合金表面呈多顆粒狀分布,合金中含銅量越高,越負的電位合金表面顆粒越少,合金中含鎳量越高。以不同電位析鍍銅鎳合金時會得到不同成分比例的銅鎳合金。在部分條件下會有明顯偏析的現象產生,且合金以顆粒狀堆疊形成管柱狀結構,管柱中心為富銅合金相外圍包圍富鎳合金相的結構。
    簡單利用在同一反應槽中以電化學法進行共鍍與選擇性溶解即可製作多孔性電極。對銅鎳合金進行選擇性溶解後,有多孔性結構形成,孔洞狀形為短中空管結構直徑約150 nm。推論孔洞的形成機制主要在於銅鎳還原時分佈不平均,造成銅鎳合金成分比例不同,影響選擇性溶解時銅鎳合金的溶解差異性。當銅鎳合金選擇性溶解時,富銅合金會被溶解,而富鎳合金則不易溶解,因此殘留下富銅合金形成多孔性結構。
    將多孔性鎳電極以陽極沈積法沈積錳氧化物應用於超高電容器上。錳氧化物以奈米纖維狀覆蓋於多孔性鎳電極上,以循環伏安法測試其電容性質可得到電流曲線相當接近矩形,且陰陽極反應相當對稱,顯示電極有理想的擬電容特性與電化學可逆性。在掃描速率5mV/s時比電容值為501F/g值,比電容值相較於以同樣方法製作之平面電容器高出1.8倍,且長時間的比電容值維持率達9成以上。

    This thesis studies the electrochemical preparation of porous Ni electrode from aqueous plating bath and its application for manganese oxide capacitors.
    The porous Ni was prepared be electrodeposition of Ni-Cu alloy on the indium-tin-oxide (ITO) substrate followed by anodic dissolution of the Cu of the Ni-Cu alloy. During the deposition step granular deposits rich in Cu were obtained at more positive deposition potentials. The Ni content in the Ni-Cu increased as the deposition potential became more negative. Under certain conditions columnar structure was formed by stacking of the granular deposits. The Cu and Ni distributed non-uniformally in the columnar deposits; the Cu is rich in the central part and surrounded by Ni-rich alloy. After the deposition, electrochemical dealloying was performed in the same cell used for deposition. Porous surface containing hollow Ni tubes with diameter if about 150nm were produced because the Cu-rich alloys in the central part of the columnar deposits were selectively dissolved.
    The porous Ni electrodes was tested for manganese oxide nano-fibers was coated electrochemically onto the porous Ni electrode. At a scan rate of 5mV/s. Cyclic voltammetry experiments indicate that the capacitance available from the porous Ni electrode was 501F/g which is 1.8 times higher than that obtained from planar Ni electrode.

    目錄Ⅰ 表目錄 Ⅲ 圖目錄Ⅳ 中文摘要 Abstract ⅩⅠ 第1章 緒論 1 第2章 實驗原理與文獻回顧 5 2-1 去合金化的原理 5 2-2 電鍍銅鎳合金及其去合金化的原理 7 2-3 錳氧化物於超高電容器中的應用 9 第3章 實驗步驟及方法 22 第4章 實驗結果與討論 29 4-1 銅鎳合金的製備 29 4-1-1 各鍍液的基本電化學特性 29 4-1-2 於不同電位下電鍍鎳銅合金對鍍層表面形貌及成份的關係 35 4-1-3 元素分佈 38 4-1-4 合金薄膜橫截面 38 4-2 多孔性鎳電極的製備 51 4-2-1 選擇性溶解電位對合金表面形貌及成份的關係 51 4-2-2 不同析鍍電位之銅鎳合金選擇性溶解後表面形貌及成份的關係 52 4-2-3 銅鎳合金階段性選擇性溶解 54 4-2-4 多孔洞結構的表面元素分析 56 4-2-5 選擇性溶解後鍍層橫截面圖 57 4-3 多孔性鎳電極應用於超高電容器 73 4-3-1 利用陽極沉積法製備錳氧化物電極與表面形貌研究 73 4-3-2 多孔性電容器與鎳平面電容器比電容值的關係 74 第5章 結論 82 第6章 參考文獻 84

    1. Chifen, A. N.; Knoll, W.; Forch, R., Fabrication of nano-porous silicon oxide layers by plasma polymerisation methods. Materials Letters 2007, 61, (8-9), 1722-1724.
    2. Sevilla, M.; Alvarez, S.; Centeno, T. A.; Fuertes, A. B.; Stoeckli, F., Performance of templated mesoporous carbons in supercapacitors. Electrochimica Acta 2007, 52, (9), 3207-3215.
    3. Zhu, Z. Q.; Shao, L.; Zhang, J.; Zhu, J. Z., Porous silicon as a carrier of sensing materials in sensors. Rare Metal Materials and Engineering 2006, 35, 471-475.
    4. Kandori, K.; Hori, N.; Ishikawa, T., Preparation of mesoporous hematite particles by a forced hydrolysis reaction accompanying a peptide production reaction. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2006, 290, (1-3), 280-287.
    5. Ros, A.; Lillo-Rodenas, M. A.; Fuente, E.; Montes-Moran, M. A.; Martin, M. J.; Linares-Solano, A., High surface area materials prepared from sewage sludge-based precursors. Chemosphere 2006, 65, (1), 132-140.
    6. Sung, I. K.; Nghiem, Q. D.; Asthana, A.; Kim, D. P., Fabrication of ceramic microchannels with tailored pores. Eco-Materials Processing & Design Vii 2006, 510-511, 1030-1033.
    7. Yue, Z. R.; Economy, J.; Bordson, G., Preparation and characterization of NaOH-activated carbons from phenolic resin. Journal of Materials Chemistry 2006, 16, (15), 1456-1461.
    8. Wang, H.; Li, X. D.; Yu, F. C.; Kim, D. P., Preparation and characterization of 3-dimensionally ordered macroporous SiC. Science in China Series E-Engineering & Materials Science 2006, 49, (1), 1-9.
    9. Li, Z. L.; Zhang, J.; Li, Y.; Guan, Y. J.; Feng, Z. C.; Li, C., Preparation and characterization of ordered mesoporous carbons on SBA-15 template. Journal of Materials Chemistry 2006, 16, (14), 1350-1354.
    10. Kowalak, S.; Migdal, J.; Held, K.; Kocinski, R.; Szymanski, L.; Janiszewska, E., Preparation of porous materials with nitrogen in the framework. Molecular Sieves: From Basic Research to Industrial Applications, Pts a and B 2005, 158, 199-206.
    11. Zhang, J. R.; Jiang, D. C.; Chen, B.; Zhu, J. J.; Jiang, L. P.; Fang, H. Q., Preparation and electrochemistry of hydrous ruthenium oxide/active carbon electrode materials for supercapacitor. Journal of the Electrochemical Society 2001, 148, (12), A1362-A1367.
    12. Wang, H.; Wang, J. W.; Xu, B. Q.; Qiu, X. Q., Preparation and characterization of a novel class of solid acid catalyst Nafion/SiO2. Acta Chimica Sinica 2001, 59, (9), 1367-1371.
    13. Liang, T. T.; Yamada, Y.; Yoshizawa, N.; Shiraishi, S.; Oya, A., Preparation of porous carbon by defluorination of poly(tetrafluoroethylene) and the effect of gamma-irradiation on the polymer. Chemistry of Materials 2001, 13, (9), 2933-2939.
    14. Lebedeva, O. E.; Dubovichenko, A. E.; Kotsubinskaya, O. I.; Sarmurzina, A. G., Preparation of porous glasses from phosphorus slag. Journal of Non-Crystalline Solids 2000, 277, (1), 10-14.
    15. Gordeeva, L. G.; Aristov, Y. I.; Moroz, E. M.; Rudina, N. A.; Zaikovskii, V. I.; Tanashev, Y. Y.; Parmon, V. N., Preparation and Study of Porous Uranium-Oxides as Supports for New Catalysts of Steam Reforming of Methane. Journal of Nuclear Materials 1995, 218, (2), 202-209.
    16. Mikos, A. G.; Bao, Y.; Cima, L. G.; Ingber, D. E.; Vacanti, J. P.; Langer, R., Preparation of Poly(Glycolic Acid) Bonded Fiber Structures for Cell Attachment and Transplantation. Journal of Biomedical Materials Research 1993, 27, (2), 183-189.
    17. Okamoto, M., Preparation of Phenyl Treated Packing Materials for High-Performance Liquid-Chromatography - Evaluation by Retention Behavior of Carbamazepine and Diphenylhydantoin. Yakugaku Zasshi-Journal of the Pharmaceutical Society of Japan 1992, 112, (6), 409-413.
    18. Zhou, M.; Myung, N.; Chen, X.; Rajeshwar, K., Electrochemical Deposition and Stripping of Copper, Nickel and Copper-Nickel Alloy Thin-Films at a Polycrystalline Gold Surface - a Combined Voltammetry-Coulometry-Electrochemical Quartz-Crystal Microgravimetry Study. Journal of Electroanalytical Chemistry 1995, 398, (1-2), 5-12.
    19. Yang, Y.; Liu, S. M.; Kimura, K., Superlattice formation from polydisperse Ag nanoparticles by a vapor-diffusion method. Angewandte Chemie-International Edition 2006, 45, (34), 5662-5665.
    20. Dong, T. Y.; Wu, H. H.; Lin, M. C., Superlattice of octanethiol-protected copper nanoparticles. Langmuir 2006, 22, (16), 6754-6756.
    21. Smetana, A. B.; Klabunde, K. J.; Sorensen, C. M., Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation. Journal of Colloid and Interface Science 2005, 284, (2), 521-526.
    22. Kanehara, M.; Oumi, Y.; Sano, T.; Teranishi, T., Syntheses of the novel acidic and basic ligands and superlattice formation from gold nanoparticles through interparticle acid-base interaction. Bulletin of the Chemical Society of Japan 2004, 77, (8), 1589-1597.
    23. Xu, W.; Akins, D. L., Reverse micellar synthesis of CdS nanoparticles and self-assembly into a superlattice. Materials Letters 2004, 58, (21), 2623-2626.
    24. Wang, S. H.; Yao, H.; Sato, S.; Kimura, K., Inclusion-water-cluster in a three-dimensional superlattice of gold nanoparticles. Journal of the American Chemical Society 2004, 126, (24), 7438-7439.
    25. Akins, D. L.; Xu, W.; O'Brien, S. P.; Huang, L. M.; Yin, M., Self-assembly of semiconductor nanoparticles into superlattice. Abstracts of Papers of the American Chemical Society 2003, 225, U509-U509.
    26. Hong, S. Y.; Popovitz-Biro, R.; Prior, Y.; Tenne, R., Synthesis of SnS2/SnS fullerene-like nanoparticles: A superlattice with polyhedral shape. Journal of the American Chemical Society 2003, 125, (34), 10470-10474.
    27. Wang, T. X.; Zhang, D. Q.; Xu, W.; Zhu, D. B., Self organization of gold nanoparticles into 2D superlattice through pi-pi interacton. Synthetic Metals 2003, 135, (1-3), 835-836.
    28. Lin, J.; Zhou, W. L.; Carpenter, E.; O'Connor, C., Influence of capping ligands on the self-organizations of gold nanoparticles into superlattice from CTAB reverse micelles. Chinese Journal of Chemistry 2002, 20, (2), 127-134.
    29. Fink, J.; Burrows, A.; Brust, M.; Aindow, M.; Kiely, C. J., Adoption of near-coincident-site lattice orientations by contacting monolayer rafts of metallic nanoparticles with different superlattice periodicities. Philosophical Magazine Letters 2002, 82, (1), 21-26.
    30. Puntes, V. F.; Krishnan, K. M.; Alivisatos, P., Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystal epsilon-Co nanoparticles. Applied Physics Letters 2001, 78, (15), 2187-2189.
    31. He, S. T.; Yao, J. N.; Jiang, P.; Shi, D. X.; Zhang, H. X.; Xie, S. S.; Pang, S. J.; Gao, H. J., Formation of silver nanoparticles and self-assembled two-dimensional ordered superlattice. Langmuir 2001, 17, (5), 1571-1575.
    32. Li, W.; Huo, L. H.; Wang, D. M.; Zeng, G. F.; Xi, S. Q.; Zhao, B.; Zhu, J. J.; Wang, J.; Shen, Y. C.; Lu, Z. H., Self-assembled multilayers of alternating gold nanoparticles and dithiols: approaching to superlattice. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2000, 175, (1-2), 217-223.
    33. Taleb, A.; Russier, V.; Courty, A.; Pileni, M. P., Optical anisotropy of organized silver nanoparticles in 2D superlattice. Applied Surface Science 2000, 162, 655-661.
    34. Li, W.; Xu, R.; Wang, L. Y.; Cui, H. N.; Xi, S. Q., Superlattice structure of gold nanoparticles film deposited by Langmuir-Blodgett technique. Molecular Crystals and Liquid Crystals 1999, 337, 185-188.
    35. Liu, L.; Jia, N. Q.; Zhou, Q.; Yan, M. M.; Jiang, Z. Y., Electrochemically fabricated nanoelectrode ensembles for glucose biosensors. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 2007, 27, (1), 57-60.
    36. Aoki, S., Supramolecular chemistry of multinuclear zinc (II) complexes in aqueous solution. Yakugaku Zasshi-Journal of the Pharmaceutical Society of Japan 2002, 122, (12), 1095-1108.
    37. Lavalette, A.; Hamblin, J.; Marsh, A.; Haddleton, D. M.; Hannon, M. J., Interfacing supramolecular and macromolecular chemistry: metallo-supramolecular triple-helicates incorporated into polymer networks. Chemical Communications 2002, (24), 3040-3041.
    38. Araki, K.; Toma, H. E., Chemistry of supramolecular systems containing porphyrins and metal complexes. Quimica Nova 2002, 25, (6A), 962-975.
    39. Ma, Y. G.; Kolotuchin, S. V.; Zimmerman, S. C., Supramolecular polymer chemistry: Self-assembling dendrimers using the DDA center dot AAD (GC-like) hydrogen bonding motif. Journal of the American Chemical Society 2002, 124, (46), 13757-13769.
    40. Gerasko, O. A.; Samsonenko, D. G.; Fedin, V. P., Supramolecular chemistry of cucurbiturils. Uspekhi Khimii 2002, 71, (9), 840-861.
    41. Lehn, J. M., Supramolecular polymer chemistry- scope and perspectives. Polymer International 2002, 51, (10), 825-839.
    42. Turro, N. J., From molecular chemistry to supramolecular chemistry to superdupermolecular chemistry. Controlling covalent bond formation through non-covalent and magnetic interactions. Chemical Communications 2002, (20), 2279-2292.
    43. Aoki, S., Creation of new supramolecular chemistry based on multiple interaction in aqueous solution. Yakugaku Zasshi-Journal of the Pharmaceutical Society of Japan 2002, 122, (10), 793-804.
    44. Koh, D. S.; Moon, D. W., Bionanotechnology for single-cell analysis. International Journal of Nanotechnology 2006, 3, (2-3), 314-333.
    45. Marero, D. M.; Enguita, O.; Zubiri, J. G.; Rodriguez, A.; Narros, J.; Boerma, D. O., Exploiting the third dimension in nanofabrication technology with scanned high energy ion beams. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 2006, 249, 253-256.
    46. Spemann, D.; Lorenz, M.; Butz, T.; Otte, K., Ion-beam analysis of CuInSe2 solar cells deposited on polyimide foil. Analytical and Bioanalytical Chemistry 2004, 379, (4), 622-627.
    47. Kim, G. M.; Kovalgin, A.; Holleman, J.; Brugger, J., Replication molds having nanometer-scale shape control fabricated by means of oxidation and etching. Journal of Nanoscience and Nanotechnology 2002, 2, (1), 55-59.
    48. Guo, P.; Wang, J.; Li, X.; Zhu, J.; Reinert, T.; Heitmann, J.; Spemann, D.; Vogt, J.; Flagmeyer, R. H.; Butz, T., Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 2000, 161, 801-807.
    49. Wang, J.; Guo, P.; Li, X.; Zhu, J.; Reinert, T.; Heitmann, J.; Spemann, D.; Vogt, J.; Flagmeyer, R. H.; Butz, T., Identification of air pollution sources by single aerosol particle fingerprints - micro-PIXE spectra. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 2000, 161, 830-835.
    50. Yang, K. Y.; Hong, S. H.; Lee, H.; Choi, J. W., Fabrication of nano-sized gold dot array using bi-layer nano imprint lithography. Eco-Materials Processing & Design Vii 2006, 510-511, 446-449.
    51. Carcenac, F.; Malaquin, L.; Vieu, C., Fabrication of multiple nano-electrodes for molecular addressing using high-resolution electron beam lithography and their replication using soft imprint lithography. Microelectronic Engineering 2002, 61-2, 657-663.
    52. Huang, J. F.; Sun, I. W., Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au-Zn in an ionic liquid, and the self-assembly of L-cysteine monolayers. Advanced Functional Materials 2005, 15, (6), 989-994.
    53. Yeh, F. H.; Tai, C. C.; Huang, J. F.; Sun, I. W., Formation of porous silver by electrochemical alloying/dealloying in a water-insensitive zinc chloride-1-ethyl-3-methyl imidazolium chloride ionic liquid. Journal of Physical Chemistry B 2006, 110, (11), 5215-5222.
    54. Lu, H. B.; Li, Y.; Wang, F. H., Synthesis of porous copper from nanocrystalline two-phase Cu-Zr film by dealloying. Scripta Materialia 2007, 56, (2), 165-168.
    55. Fukumizu, T.; Kotani, F.; Yoshida, A.; Katagiri, A., Electrochemical formation of porous nickel in zinc chloride-alkali chloride melts. Journal of the Electrochemical Society 2006, 153, (9), C629-C633.
    56. Al-Kharafi, F. M.; Ateya, B. G.; Abd Allah, R. M., Selective dissolution of brass in salt water. Journal of Applied Electrochemistry 2004, 34, (1), 47-53.
    57. Katagiri, A.; Nakata, M., Preparation of a high surface area nickel electrode by alloying and dealloying in a ZnCl2-NaCl melt. Journal of the Electrochemical Society 2003, 150, (9), C585-C590.
    58. Stein, M.; Owens, S. P.; Pickering, H. W.; Weil, K. G., Dealloying studies with electrodeposited zinc-nickel alloy films. Electrochimica Acta 1998, 43, (1-2), 223-226.
    59. Islam, M.; Riad, W. T.; Alkharraz, S.; Abonamous, S., Stress-Corrosion Cracking Behavior of 90 10 Cu-Ni Alloy in Sodium Sulfide Solutions. Corrosion 1991, 47, (4), 260-268.
    60. Erlebacher, J.; Sieradzki, K., Pattern formation during dealloying. Scripta Materialia 2003, 49, (10), 991-996.
    61. Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K., Evolution of nanoporosity in dealloying. Nature 2001, 410, (6827), 450-453.
    62. Sun, L.; Chien, C. L.; Searson, P. C., Fabrication of nanoporous nickel by electrochemical dealloying. Chemistry of Materials 2004, 16, (16), 3125-3129.
    63. Agoudjil, N.; Benkacem, T., Synthesis of porous titanium dioxide membranes. Desalination 2007, 206, (1-3), 531-537.
    64. Kremer, D. M.; Hancock, B. C., Process simulation in the pharmaceutical industry: A review of some basic physical models. Journal of Pharmaceutical Sciences 2006, 95, (3), 517-529.
    65. Akedo, J.; Lebedev, M., Powder preparation in aerosol deposition method for lead zirconate titanate thick films. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 2002, 41, (11B), 6980-6984.
    66. Hino, T.; Serigano, T.; Yamamoto, H.; Takeuchi, H.; Niwa, T.; Kawashima, Y., Particle design of Wogon extract dry powder for inhalation aerosols with granulation method. International Journal of Pharmaceutics 1998, 168, (1), 59-68.
    67. Landron, C.; Odier, P.; Bazin, D., Insitu Xas of Aerosol Systems - Application to the Structural Study of a Zirconia Precursor. Europhysics Letters 1993, 21, (8), 859-864.
    68. Xu, C. L.; Bao, S. J.; Kong, L. B.; Li, H.; Li, H. L., Highly ordered MnO2 nanowire array thin films on Ti/Si substrate as an electrode for electrochemical capacitor. Journal of Solid State Chemistry 2006, 179, (5), 1351-1355.
    69. Bao, S. J.; He, B. L.; Liang, Y. Y.; Zhou, W. J.; Li, H. L., Synthesis and electrochemical characterization of amorphous MnO2 for electrochemical capacitor. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2005, 397, (1-2), 305-309.
    70. Prasad, K. R.; Miura, N., Polyaniline-MnO2 composite electrode for high energy density electrochemical capacitor. Electrochemical and Solid State Letters 2004, 7, (11), A425-A428.
    71. Toupin, M.; Brousse, T.; Belanger, D., Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chemistry of Materials 2004, 16, (16), 3184-3190.
    72. Reddy, R. N.; Reddy, R. G., Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material. Journal of Power Sources 2004, 132, (1-2), 315-320.
    73. Brousse, T.; Belanger, D., A hybrid Fe3O4-MnO2 capacitor in mild aqueous electrolyte. Electrochemical and Solid State Letters 2003, 6, (11), A244-A248.
    74. Liu, X. H.; Wang, J. Q.; Zhang, J. Y.; Yang, S. R., Fabrication and characterization of Zr and Co co-doped LiMn2O4 nanowires using sol-gel-AAO template process. Journal of Materials Science-Materials in Electronics 2006, 17, (11), 865-870.
    75. Zhou, Y. K.; Huang, J.; Li, H. L., Synthesis of highly ordered LiMnO2 nanowire arrays (by AAO properties template) and their structural properties. Applied Physics a-Materials Science & Processing 2003, 76, (1), 53-57.
    76. Zhou, Y. K.; Huang, J.; Li, H. L., Synthesis of highly ordered LiMnO2 nanowire arrays (by AAO template) and their structural properties. Applied Physics B-Lasers and Optics 2003, 76, (1), 53-57.
    77. Oskam, G.; Searson, P. C.; Jow, T. R., Sol-gel synthesis of carbon/silica gel electrodes for lithium intercalation. Electrochemical and Solid State Letters 1999, 2, (12), 610-612.
    78. Ahn, H. J.; Sohn, J. I.; Kim, Y. S.; Shim, H. S.; Kim, W. B.; Seong, T. Y., Electrochemical capacitors fabricated with carbon nanotubes grown within the pores of anodized aluminum oxide templates. Electrochemistry Communications 2006, 8, (4), 513-516.
    79. Chen, Q. L.; Xue, K. H.; Shen, W.; Tao, F. F.; Yin, S. Y.; Xu, W., Fabrication and electrochemical properties of carbon nanotube array electrode for supercapacitors. Electrochimica Acta 2004, 49, (24), 4157-4161.
    80. Wang, X. Y.; Wang, X. Y.; Huang, W. G.; Sebastian, P. J.; Gamboa, S., Sol-gel template synthesis of highly ordered MnO2 nanowire arrays. Journal of Power Sources 2005, 140, (1), 211-215.
    81. Zhou, Y. K.; Li, H. L., Sol-gel template synthesis and structural properties of a highly ordered LiNi0.5Mn0.5O2 nanowire array. Journal of Materials Chemistry 2002, 12, (3), 681-686.
    82. Erlebacher, J., An atomistic description of dealloying - Porosity evolution, the critical potential, and rate-limiting behavior. Journal of the Electrochemical Society 2004, 151, (10), C614-C626.
    83. Sieradzki, K.; Dimitrov, N.; Movrin, D.; McCall, C.; Vasiljevic, N.; Erlebacher, J., The dealloying critical potential. Journal of the Electrochemical Society 2002, 149, (8), B370-B377.
    84. Brousse, T.; Toupin, M.; Dugas, R.; Athouel, L.; Crosnier, O.; Belanger, D., Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. Journal of the Electrochemical Society 2006, 153, (12), A2171-A2180.
    85. Cottineau, T.; Toupin, M.; Delahaye, T.; Brousse, T.; Belanger, D., Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Applied Physics a-Materials Science & Processing 2006, 82, (4), 599-606.
    86. Brousse, T.; Toupin, M.; Belanger, D., A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte. Journal of the Electrochemical Society 2004, 151, (4), A614-A622.
    87. Toupin, M.; Brousse, T.; Belanger, D., Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chemistry of Materials 2002, 14, (9), 3946-3952.
    88. Lee, H. Y.; Goodenough, J. B., Supercapacitor behavior with KCl electrolyte. Journal of Solid State Chemistry 1999, 144, (1), 220-223.
    89. Chang, J. K.; Tsai, W. T., Microstructure and pseudocapacitive performance of anodically deposited manganese oxide with various heat-treatments. Journal of the Electrochemical Society 2005, 152, (10), A2063-A2068.
    90. Chang, J. K.; Chen, Y. L.; Tsai, W. T., Effect of heat treatment on material characteristics and pseudo-capacitive properties of manganese oxide prepared by anodic deposition. Journal of Power Sources 2004, 135, (1-2), 344-353.
    91. Chang, J. K.; Lin, C. T.; Tsai, W. T., Manganese oxide/carbon composite electrodes for electrochemical capacitors. Electrochemistry Communications 2004, 6, (7), 666-671.
    92. Chang, J. K.; Tsai, W. T., Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors. Journal of the Electrochemical Society 2003, 150, (10), A1333-A1338.

    下載圖示 校內:2008-08-06公開
    校外:2010-08-06公開
    QR CODE