| 研究生: |
郭韋辰 Guo, Wei-Chen |
|---|---|
| 論文名稱: |
考慮浮時損失影響下之最佳趕工決策 Optimal Project Compression Decision-making Concerning Impact of Float Time Loss |
| 指導教授: |
潘南飛
Pan, Nang-Fei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 時間-成本權衡模式 、浮時損失 、要徑指數 、專案趕工問題 、機率理論 、動態排程 |
| 外文關鍵詞: | Time-cost trade-off, float loss, criticality index, project crashing problem, probability theory, dynamics scheduling |
| 相關次數: | 點閱:95 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
營建工程的施工階段存在許多無可避免或不可預期的不確定因素,可能使作業施工日期延後,進而造成整體工程進度落後,因此管理者或承包商須決定趕工計畫之可行性。過往研究針對專案趕工之時間、成本為主要因素來分析趕工問題,建立時間-成本權衡模式,透過管理者輸入期望工期之情形下獲得最佳趕工決策。然而,於執行趕工計畫時,壓縮要徑作業之工期可能導致非要徑作業產生浮時損失,使專案彈性降低。本研究利用要徑指數來代表浮時損失所造成之影響,且搭配作業成本建立雙目標權衡模式並加入期望工期門檻限制,獲得兼顧成本及專案彈性之最佳趕工決策。
本研究所提出之模式分別以線性及非線性函數來描述作業成本及其要徑指數變化,試比較兩者結果之差異。此外,考量專案執行過程可能面臨許多不確定性因素進而影響工期,為避免產生模式求解結果與實際情況不相符之情形,故本研究亦提出隨機型及即時反應兩種趕工模式,將機率理論及動態排程導入模式中來處理施工期間所面臨不確定性之問題。
There are lots of inevitable or unpredictable uncertain factors that might happen during construction phase, which may cause construction progress fall behind schedule. Therefore, project managers or contractors need to set a feasible catch-up plan. To find the suitable plan, past studies focus on the two main factors, which are duration, costs, using these factors to analyze the project crashing problems. Furthermore, by entering the expected project completed time, the managers would get the optimal compression decision. However, in case of crashing, the available total float for noncritical activities may be reduced, and thus, the schedule flexibility would be reduced. Therefore, this study uses the criticality index to represent the impact of float loss, proposes a cost-criticality index trade-off model and sets the expected project completed time as a threshold to obain the decision that takes into account cost and project flexibility.
This study considers the time-cost relation via non-linear function and linear function, and compares the difference between the two results. Additionally, to correspond with the practice, this study also takes the probability theory and dynamics scheduling into account, proposing the stochastics and real-time reaction models.
1.AbouRizk, S. M. and Halpin, D. W., “Statistical properties of construction duration data.” Journal of Construction Engineering and Management, ASCE, Vol. 118, Iss. 3, pp. 525-543,1992.
2.AbouRizk, S. M., Halpin, D. W., and Wilson, J. R.,“Visual interactive fitting of beta distributions.” Journal of Construction Engineering and Management, ASCE, Vol. 117, Iss. 4, pp. 589-605,1991.
3.Akintoye, A., “Analysis of factors influencing project cost estimating practice”, Construction Management and Economics, Vol. 18, Iss. 1, 77-89, 2000.
4.Ang, A. H.-S. and Tang, W. H., Probability concepts in engineering planning and design: Volume I - basic principles, Wiley, New York, 1975.
5.Cai X, Hejazi MI, and Wang D., “V Value of Probabilistic Weather Forecasts: Assessment by Real-Time Optimization of Irrigation Scheduling.”, J. Water Resour. Plann. Manage., Vol. 137, Iss. 5, 391–403,2011.
6.Cai, X., Hejazi, M. I., and Wang, D., “Value of probabilistic weather forecasts: Assessment by real-time optimization of irrigation scheduling”, Journal of Water Resources Planning and Management, Vol. 137, Iss. 5, 391-403, 2011.
7.Chen, S.P., and Tsai, M.J., “Time-cost trade-off analysis of project networks in fuzzy environments”, European Journal of Operational Research, Vol. 212, Iss. 2, 386-397, 2011.
8.Diao, X., Li, H., Zeng, S., Tam, V.W.Y., and Guo, H., “A Pareto Multi-objective optimization approach for solving time-cost-quality tradeoff problems”, Technological and Economic Development of Economy, Vol. 17, Iss. 1, 22-41, 2011.
9.Daisy, X, M, Z, et al., “Applying a Genetic Algorithm-Based Multiobjective Approach for Time-Cost Optimization”, J. Constr. Eng. Manage., Vol.130, Iss.2, 168-176, 2004.
10.Demeulemeester, E.L., Herroelen, W. S., and Elmaghraby, S. E., “Optimal procedures for the discrete time/cost trade-off problem in project networks”, European Journal of Operational Research 88,50-68,1996.
11.Diaby, M. and Cruz, J. M., “Project crashing in the presence of general non-linear activity time reduction costs”, Int. J. Operational Research, Vol. 12, Iss. 3, 2011.
12.Eshtehardian, E., Afshar, A., and Abbasnia, R., “Fuzzy-based MOGA approach to stochastic time-cost trade-off problem”, Automation in Construction, Vol. 18, Iss. 5, 692-701, 2009.
13.Falk, J.E., and Horowitz, J.L., “Critical path problems with concave cost-time curves”, Management Science, Vol. 19, No. 4, 446-455, 1972.
14.Farid, F. and Koning, T. L., “Simulation verifies queuing program for selecting loader-truck fleets.” Journal of Construction Engineering and Management, Vol. 120, Iss. 2, pp. 386-404,1994.
15.Fente, J., Schexnayder, C., and Knutson, K., “Defining a probability distribution function for construction simulation.” Journal of Construction Engineering and Management, Vol. 126, Iss. 3, pp.234-241,2002.
16.Garza, J. M., Vorster, M. C., and Parvin, C. M., “Total float traded as commodity.” J. Constr. Eng. Manage., Vol. 117, Iss. 4, 716–727,1991.
17.Ghazanfari, M., Yousefli, A. Jabal Ameli, M.S., and Bozorgi-Amiri A., “A new approach to solve time-cost trade-off problem with fuzzy decision variables”, The International Journal of Advanced Manufacturing Technology, Vol. 42, Iss. 3, 408-414, 2009.
18.Hai, R. A. A., and EI-Sayegh S. M., “Time–cost optimization model considering float-consumption impact”, Journal of Construction Engineering and Management, Vol. 14, Iss. 5, 1-10, 2015.
19.Halpin, D. W. and Riggs, L. S., Planning and analysis of construction operations, Wiley, New York, NY,1992.
20.Householder, J. L., and Rutland, H. E., “Who owns float.” J. Constr. Eng. Manage., Vol. 116, Iss. 1, 130-133,1990.
21.Jung, D., Kang, D. Kang, M., and Kim, B., “Real-time pump scheduling for water transmission systems: Case study”, Journal of Civil Engineering, Vol. 19, Iss. 7, 1987-1993, 2015.
22.Kalhor, E., Khanzadi, M., Eshtehardian, E., and Afshar, A., “Stochastic time-cost optimization using non-dominated archiving ant colony approach”, Automation in Construction, Vol. 20, Iss. 8, 1193-1203, 2011.
23.Keane, P. J., & Caletka, A. F., “Delay analysis in construction contracts.” Oxford; Ames, Iowa: Wiley-Blackwell,2008.
24.Kim, G.H., An, S.H., and Kang, K.I., “Comparison of construction cost estimating models based on regression analysis, neural networks, and case-based reasoning”, Building and Environment, Vol. 39, Iss. 10, 1235-1242, 2004.
25.L. Song, N.N. Eldin, Adaptive real-time tracking and simulation of heavy construction operations for look-ahead scheduling, Autom. Constr. 27 (2012) 32–39.
26.Lee, D. E., Arditi, D., and Son, C. B., “The probability distribution of project completion times in simulation-based scheduling”, Journal of Civil Engineering, Vol. 17, Iss. 4, 638-645, 2013.
27.Liu S. Q. Ong H. L. and Ng K. M., “Metaheuristics for minimizing the makespan of the dynamic shop scheduling problem.”, Advances in Engineering Software, Vol.36, Iss. 3, 199-205,2005
28.Liu, J., and Rahbar, F., “Project time-cost tradeoff optimization by maximal flow theory.” Journal of Construction Engineering and Management, Vol. 130, Iss. 4, 607–609,2004.
29.Liu, L., and Zhu, K., “Improving cost estimates of construction projects using phased cost factors”, Journal of Construction Engineering and Management, Vol. 133, Iss. 1, 91-95, 2007.
30.Liu, L., Burns, S.A., and Feng, C.W., “Construction time-cost trade-off analysis using LP/IP hybrid method”, Journal of Construction Engineering and Management, Vol. 121, Iss. 4, 446-454, 1995.
31.Martin, J.J., “Distribution of the time through a directed acyclic network”, Operations Research 13, 46-66, 1965.
32.Maio, C. and Schexnayder, C., “Probability distribution function for construction simulation.” Journal of Construction Engineering and Management, Vol. 126, Iss. 4, pp. 285-292,2000.
33.Mohamed, A., and Celik, T., “An integrated knowledge-based system for alternative design and materials selection and cost estimating”, Expert Systems with Applications, Vol. 14, Iss. 3, 329-339, 1998.
34.Moussourakis, J., and Haksever, C., “Project compression with nonlinear cost functions’’, Journal of Construction Engineering and Management, Vol. 136, Iss. 2, 251-259, 2010.
35.Mubarak, S.A., “Construction project scheduling and control (2nd ed.)”, Hoboken, NJ: Wiley,2010.
36.Ng, S., and Zhang, Y., “Optimizing construction time and cost using ant colony optimization approach.” Journal of Construction Engineering and Management, Vol. 134, Iss. 9, 721–728,2008.
37.Ouelhadj D., Petrovic S., “Survey of dynamic scheduling in manufacturing systems,”, Journal of Scheduling, 1094-6136,2007
38.Sakka Z. I. and El-Sayegh S. M., “Float consumption impact on cost and schedule in the construction industry.” J. Constr. Eng. Manage., Vo. 133, Iss. 2, 124–130,2007.
39.Schexnayder, C., Knutson, K., and Fente, J., “Describing a beta probability distribution function for construction simulation.” Journal of Construction Engineering and Management, Vol. 131, Iss. 2, 221-229,2005
40.Sculli, D., “The completion time of PERT networks.” The Journal of the Operational Research Society, Vol. 34, Iss. 2, 155-158,1983.
41.Sharbatdar, M.K., Talatahari, S., and Mousavi, M.R., “Developing new charged system search-based algorithm: application in the time-cost trade-off problems”, The Turkish Online Journal of Design, Art and Communication, Vol. 6, August Special Edition, 1773-1788, 2016.
42.Sigal, C.E., Pritsker, A.A.B, and Solberg, J.J, “The use of cutsets in Monte Carlo anaylsis of stochastic networks”, Mathematics and Computers in Simulation 21, 376-384, 1979.
43.Song, L., and Eldin, N. N., “Adaptive real-time tracking and simulation of heavy construction operations for look-ahead scheduling”, Automation in Construction, Vol. 27, 32-39, 2012.
44.Van Slyke, R.M., “Monte Carlo methods and the PERT problem”, Operations Research 11, 839-860,1963.
45.Yamamoto M. and Nof S. Y., “Scheduling/rescheduling in the manufacturing operating system environment.”, International Journal of Production Research, 23 (4), 705-722,1985
46.Yang, I. T., “Chance-constrained time-cost trade-off analysis considering funding variability”, J. Constr. Eng. Manage., Vol.131, Iss. 9, 1002–1012,2005.
47.Yang, I. T., “Performing complex project crashing analysis with aid of particle swarm optimization algorithm”, International Journal of Project Management 25, 637-646,2007.
48.Yang, I. T., “Distribution-free Monte Carlo simulation: Premise and refinement” J. Constr. Eng. Manage., Vol.134, Iss. 5, 352–360,2008.
49.Zhong, D. H., and Zhang, J. S., “New method for calculating path float in program evaluation and review technique PERT.” J. Constr. Eng. Manage., Vol. 129, Iss. 5, 501–506,2003.
50.林虹谷,「製造業即時排程與重排程基礎架構」,碩士論文,國立高雄第一科技大學資訊管理系,2002。
51.杜政翰,「顧客需求不確定下接單生產環境中單一產品BOM內各品項之生產規劃決策問題」,碩士論文,國立中央大學工業管理研究所,2002。
52.張益菁,「考量需求不確定之單階多廠產能規劃問題-以TFT-LCD產業為例」,碩士論文,國立清華大學工業工程與工程管理學系,2007。
53.陳自強,「契約之成立與生效」,台北市:學林,2002。
54.鄧勝軒與黃世昌,「公共工程工程進度展延爭議的探討」,仲裁季刊,第92期,97-117,2010。
55.盧銘勳與林健泰,「交叉動態混合事件之排程系統」,崑山科技大學學報,第6期,49-59,2009。
56.蔡奇成,「以分配浮時擁有權為基礎之遲延分析方法」,博士論文,國立台灣大學土木工程學系,2014。
57.羅新興與薄喬萍,「多始點GERT工作網路趕工問題之規劃」,高雄工學院學報,第三期,241-255,1996
58.戴友椿,「需求不確定下動態訂價模式之研究-以某筆記型電腦製造商為例」,碩士論文,國立成功大學交通管理科學研究所,2006。