簡易檢索 / 詳目顯示

研究生: 黃紹軒
Huang, Shao-Xuan
論文名稱: 透析場域之氧合與末梢灌注連續監測:漫反射光學系統於閉氣測試的驗證
Continuous Monitoring of Oxygenation and Peripheral Perfusion in the Dialysis Field: Validation of a Diffuse Reflectance Optical System in Breath-Holding Tests
指導教授: 曾盛豪
Tseng, Sheng-Hao
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2025
畢業學年度: 114
語文別: 中文
論文頁數: 68
中文關鍵詞: 漫反射光譜空間解析漫反射光譜脈搏血氧灌注指數心率血氧飽和度閉氣實驗透析人工類神經網路
外文關鍵詞: diffuse reflectance spectroscopy, spatially resolved, pulse oximetry, perfusion index, heart rate, end-expiratory breath hold, dialysis, artificial neural network
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一套以空間解析漫反射光譜(spatially-resolved diffuse reflectance spectroscopy, SR-DRS)為核心之反射式非侵入連續監測系統,期望針對透析治療過程中可能發生之間歇性低氧與末梢低灌注風險進行量測。系統以 690/750/940 nm 多波段 LED 與多個源–檢距(SDS:6、8、10、14 mm)組成感測板,配合「系統響應校正」與人工類神經網路之正、反向模型進行光譜反演,估測光學參數並擷取脈動訊號;並以半體姿閉氣人體實驗模擬透析過程之低氧、低灌注現象,同步以商用裝置 Masimo Radical-7 作為參考,比對心率(HR)、脈搏血氧飽和度(SpO₂)與灌注指數(PI)的趨勢與事件偵測表現。
    結果顯示:一、HR 合併分析之皮爾森相關係數r高(r≈0.977),線性迴歸斜率0.981(近1)、截距1.3986(近0);Bland–Altman 偏差 0.062 bpm、95% 一致性界限 −4.697至4.821 bpm,顯示兩方法無明顯系統性差異且一致性良好。二、於閉氣任務中,雙系統皆能辨識SpO₂ 之「下降—低點—回復」軌跡;依ODI3(下降≥3%)判定,多數受試者由本系統較早觸發事件,惟高飽和區之微幅變化仍受解析度限制。三、PI 在閉氣期多呈同步下降、復原期回升之趨勢,跨裝置雖有絕對值差異,但相對變化與事件排序一致;本系統在上升與下降起始段落多可較早偵測變化。四、整體驗證反映反射式SR-DRS於手指部位之可行性。限制包括樣本數偏少、性別分布不均、裝置幾何與部位差異、以及未以血氣分析作黃金標準比對等。
    本研究證實所建系統可於近似透析場域之半躺姿條件下,穩定追蹤心率、偵測早期去飽和與灌注下降,具備臨床導入潛力。未來將朝硬體小型化與貼合設計、運動偽影抑制與事件預警演算法、擴增多樣性樣本與透析病房前瞻研究等方向精進。

    This study presents a reflection-mode spatially resolved diffuse reflectance spectroscopy (SR-DRS) system for noninvasive, continuous monitoring of intermittent hypoxemia and peripheral hypoperfusion relevant to hemodialysis. The sensor integrates 690/750/940-nm LEDs with source–detector separations of 6, 8, 10, and 14 mm; with system-response calibration and forward/inverse ANN models, spectra are inverted to estimate optical properties and extract pulsatile signals. A semi-reclined breath-hold human test emulated dialysis conditions and was synchronized with a Masimo Radical-7 to compare HR, SpO₂, and PI. HR agreement was high (r≈0.977; slope 0.981; intercept 1.3986); Bland–Altman bias 0.062 bpm with 95% limits of agreement −4.697 to 4.821 bpm. Both devices showed the SpO₂ “desaturation–nadir–recovery” pattern and, using ODI3, SR-DRS often triggered earlier; PI typically decreased during breath-hold and rebounded during recovery with consistent inter-device trends. Limitations include a small, male-skewed sample, site/geometry differences, and no arterial blood-gas reference. In conclusion, SR-DRS at the finger reliably tracks HR and detects early desaturation and perfusion decline under dialysis-like conditions; future work will pursue hardware miniaturization and coupling, motion-robust/event-warning algorithms, and larger prospective dialysis studies.

    摘要 I 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 第 1 章 緒論 1 第 2 章 原理 7 2.1 漫反射光譜學(Diffuse Reflectance Spectroscopy) 7 2.2 蒙地卡羅法(Monte Carlo Method) 8 2.3 人工類神經網路(Artificial neural network, ANN) 10 2.4 待測物吸收、縮減散射係數之計算流程 12 2.5 比爾朗伯定律(Beer-Lambert Law) 13 2.6 色團擬合(Chromophore fitting)與脈搏血氧濃度計算方法 14 2.7 心率與心率變異性計算 17 2.8 血液灌注指數 18 第 3 章 材料與方法 19 3.1 量測裝置與架構 19 3.2 人體驗證 21 3.2.1 脈搏血氧濃度量測:閉氣實驗與量測優化 21 3.2.2 量測姿勢改變驗證 24 第 4 章 結果與討論 25 4.1 心率 25 4.1.1 個別受測者 25 4.1.2 所有受測者 29 4.2 閉氣實驗 31 4.2.1 SpO2 31 Table 4.1 閉氣測試之ODI3事件時間紀錄 32 4.2.2 PI 42 第 5 章 結論與未來工作 51 5.1 結論 51 5.2 未來工作 52 5.2.1 硬體設計 52 5.2.2 演算法優化 52 5.2.3 實驗設計 52 第 6 章 參考資料 53

    [1] "The top 10 causes of death." World Health Organization. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed 09/26, 2025).
    [2] "113年國人死因統計結果." 中華民國衛生福利部. https://www.mohw.gov.tw/cp-16-82775-1.html (accessed.
    [3] 2023台灣腎病年報(2023 Kidney Disease in Taiwan Annual Report). 台灣腎臟醫學會, 2023.
    [4] United States Renal Data System, "2023 USRDS Annual Data Report: Epidemiology of kidney disease in the United States," National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, , 2023. [Online]. Available: https://adr.usrds.org/2023
    [5] "Hemodialysis." National Institute of Diabetes and Digestive and Kidney Diseases. https://www.niddk.nih.gov/health-information/kidney-disease/kidney-failure/hemodialysis (accessed 09/26, 2025).
    [6] C. McIntyre and L. Crowley, "Dying to feel better: the central role of dialysis–induced tissue hypoxia," Clinical Journal of the American Society of Nephrology, vol. 11, no. 4, pp. 549-551, 2016.
    [7] C. W. McIntyre, "Recurrent circulatory stress: the dark side of dialysis," in Seminars in dialysis, 2010, vol. 23, no. 5: Wiley Online Library, pp. 449-451.
    [8] L. E. Harrison, N. M. Selby, and C. W. McIntyre, "Central venous oxygen saturation: a potential new marker for circulatory stress in haemodialysis patients?," Nephron Clinical Practice, vol. 128, no. 1-2, pp. 57-60, 2014.
    [9] P. Bennett et al., "Kidney Disease: Improving Global Outcomes (KDIGO) workshop on the nurse’s role in managing the symptoms of people receiving dialysis," Kidney international reports, vol. 10, no. 2, pp. 313-320, 2025.
    [10] Y. Gilli and U. Binswanger, "Continuous pulse-oxymetry during haemodialysis," Nephron, vol. 55, no. 4, pp. 368-371, 1990.
    [11] M. W. Wukitsch, M. T. Petterson, D. R. Tobler, and J. A. Pologe, "Pulse oximetry: analysis of theory, technology, and practice," Journal of clinical monitoring, vol. 4, no. 4, pp. 290-301, 1988.
    [12] M. Nitzan, A. Romem, and R. Koppel, "Pulse oximetry: fundamentals and technology update," Medical Devices: Evidence and Research, pp. 231-239, 2014.
    [13] T. Guo, Z. Cao, Z. Zhang, D. Li, and M. Yu, "Reflective oxygen saturation monitoring at hypothenar and its validation by human hypoxia experiment," Biomedical engineering online, vol. 14, no. 1, p. 76, 2015.
    [14] Y. Li, H. Gao, and Y. Ma, "Evaluation of pulse oximeter derived photoplethysmographic signals for obstructive sleep apnea diagnosis," Medicine, vol. 96, no. 18, p. e6755, 2017.
    [15] A. Romem, A. Romem, D. Koldobskiy, and S. M. Scharf, "Diagnosis of obstructive sleep apnea using pulse oximeter derived photoplethysmographic signals," Journal of Clinical Sleep Medicine, vol. 10, no. 3, pp. 285-290, 2014.
    [16] J. R. Feiner, J. W. Severinghaus, and P. E. Bickler, "Dark skin decreases the accuracy of pulse oximeters at low oxygen saturation: the effects of oximeter probe type and gender," Anesthesia & Analgesia, vol. 105, no. 6, pp. S18-S23, 2007.
    [17] K. D. Torp, P. Modi, and L. V. Simon, "Pulse oximetry," 2017.
    [18] W. Abdullah and E. Ercelebi, "Development of Pulse Oximeter by using 32-Bit ARM Based Microcontroller," in Proceedings of 176th the IIER International Conference, Kuala Lumpur, Malaysia, 2018, pp. 18-19.
    [19] G. Zonios, J. Bykowski, and N. Kollias, "Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy," Journal of Investigative Dermatology, vol. 117, no. 6, pp. 1452-1457, 2001.
    [20] T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, "Diffuse optics for tissue monitoring and tomography," Reports on progress in physics, vol. 73, no. 7, p. 076701, 2010.
    [21] "Hypodermis (Subcutaneous Tissue)." https://my.clevelandclinic.org/health/body/21902-hypodermis-subcutaneous-tissue (accessed 09/26, 2025).
    [22] L. Wang, S. L. Jacques, and L. Zheng, "MCML—Monte Carlo modeling of light transport in multi-layered tissues," Computer methods and programs in biomedicine, vol. 47, no. 2, pp. 131-146, 1995.
    [23] V. Renganathan, "Overview of artificial neural network models in the biomedical domain," Bratislava Medical Journal/Bratislavské Lekárske Listy, vol. 120, no. 7, 2019.
    [24] N. Kriegeskorte and T. Golan, "Neural network models and deep learning," Current Biology, vol. 29, no. 7, pp. R231-R236, 2019.
    [25] "The Beer-Lambert Law." https://www.edinst.com/resource/the-beer-lambert-law/ (accessed 2025.
    [26] OMLC. "Optical Absorption of Hemoglobin." https://omlc.org/spectra/hemoglobin/ (accessed 09/26, 2025).
    [27] T. F. o. t. E. S. o. C. t. N. A. S. o. P. Electrophysiology, "Heart rate variability: standards of measurement, physiological interpretation, and clinical use," Circulation, vol. 93, no. 5, pp. 1043-1065, 1996.
    [28] R. Pereira, B. Bispo, and P. M. Rodrigues, "Heart disease detection using ECG lead I and multiple pattern recognition classifiers," IOSR Journal of Engineering, vol. 10, no. 4, pp. 1-8, 2020.
    [29] F. Shaffer and J. P. Ginsberg, "An overview of heart rate variability metrics and norms," Frontiers in public health, vol. 5, p. 258, 2017.
    [30] N. Böhning, B. Schultheiss, S. Eilers, T. Penzel, W. Böhning, and E. Schmittendorf, "Comparability of pulse oximeters used in sleep medicine for the screening of OSA," Physiological measurement, vol. 31, no. 7, p. 875, 2010.
    [31] A. R. Ramírez and S. M. Gonzalez, "Arteries of the thumb: description of anatomical variations and review of the literature," Plastic and Reconstructive Surgery, vol. 129, no. 3, pp. 468e-476e, 2012.
    [32] "Home Blood Pressure Monitoring." American Heart Association. https://www.heart.org/en/health-topics/high-blood-pressure/understanding-blood-pressure-readings/monitoring-your-blood-pressure-at-home (accessed 08/14, 2025).
    [33] A. Beurton, F. Gavelli, J.-L. Teboul, N. De Vita, and X. Monnet, "Changes in the plethysmographic perfusion index during an end-expiratory occlusion detect a positive passive leg raising test," Critical Care Medicine, vol. 49, no. 2, pp. e151-e160, 2021.
    [34] D. Godek and A. M. Freeman, "Physiology, diving reflex," 2019.
    [35] H. Liu and M. Vagula, "Cardiovascular Changes in Human Diving Reflex Based on Student-Collected Data in a Physiology Lab Course," HAPS Educator, vol. 25, no. 1, pp. 45-50, 2021.

    QR CODE