簡易檢索 / 詳目顯示

研究生: 戴君毅
Dai, Jiun-Yi
論文名稱: 脈動式管流初始不穩定之現象探討
The Study of the Initial Unstable Disturbances in Pulsating Pipe Flow
指導教授: 苗君易
Miau, Jiun-Jih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 92
中文關鍵詞: 脈動式管流不穩定擾動經驗模態分離法微機電熱膜感測器
外文關鍵詞: pulsating pipe flow, unstable disturbance, Empirical Mode Decomposition, MEMS thermal-film sensor
相關次數: 點閱:99下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討脈動式管流中之初始不穩定擾動現象,藉由馬達驅動管流下游之檔板 (稱流場控制器) 旋轉,造成管流流速隨時間呈脈動式變化,此脈動式非定常管流場之三項實驗參數分別為Womersley number、平均雷諾數與振幅雷諾數。實驗中利用Hot-wire量測瞬時流速,並搭配熱膜感測器貼於壁面沿著展向方向 ,再依據流場控制器的光電輸出信號做流速相位平均(phase average);在二維擾動的假設下,比較不同相位的流速分佈曲線,吾人可探討不穩定擾動在一個脈動週期之內的變化趨勢,並使用經驗模態分離法將擾動訊號自原始訊號中分離出來,做進一步定量分析。實驗結果發現初始擾動發生在管流分佈呈減速之區域,且管流徑向分佈曲線具反曲點,這些實驗觀察可運用Rayleigh instability的觀點予以解釋。

    An experimental investigation was conducted in the developing region of a pulsating pipe flow, which was produced by a circular disk in rotation at the downstream end of the pipe flow. The flow can be characterized by three experimental parameters, namely, the Reynolds number based on the time-mean velocity, the Reynolds number based on the pulsating velocity amplitude and the Womersley Number representing the non-dimensional frequency of the pulsating flow. In the experiment, the velocity measurements were made by a boundary type hot-wire. The spanwise characteristics of unstable disturbances were observed by MEMS thermal-film sensors flushed with the wall across 40 degrees in the azimuthal direction. Then, referred to the photoelectric output of the flow controller, the velocity signals were phase-averaged. Moreover, in the assumption of two-dimensional perturbations, the Empirical Mode Decomposition Method was employed to extract the disturbance component from the phase-averaged velocity traces. Therefore, the characteristics of the disturbance were examined in detail. The results obtained indicate that the unstable disturbances are developed when the flow near the wall is in deceleration, and are occurred at the radial positions where the inflection points take place. This finding can be further explained from the viewpoint of Rayleigh instability.

    摘要 I Abstract II 致謝 III 符號說明 XIV 第一章 緒論 1 1.1 研究動機與目的 1 1.2 背景回顧 1 1.2.1 層紊流轉換 1 1.2.2 定常管流 3 1.2.3 非定常管流 3 第二章 實驗設備 7 2.1 管流設備 7 2.2 流場控制器(Flow controller) 7 2.3 量測儀器 7 2.3.1 壓力孔(pressure taps) 7 2.3.2 壓力轉換器 8 2.3.3 定溫型熱線測速儀 8 2.3.4 MEMS熱膜感測器 8 2.3.5 MEMS熱膜製作過程 9 2.4 訊號擷取系統 10 第三章實驗量測與分析訊號處理 11 3.1 流場量測與方法 11 3.2 相位平均訊號處理 11 3.3 Hilbert Huang transformation (HHT) 12 3.3.1 Empirical Mode Decomposition(EMD) 12 3.3.2 Ensemble Empirical Mode Decomposition (EEMD) 13 3.3.3 Hilbert transformation(HT) 13 3.4 交叉相關系分析 14 3.5 實驗參數 14 3.5.1 Womersley number 14 3.5.2 截面時間平均流速雷諾數(Reu) 15 3.5.3 速度振盪雷諾數(Rem) 15 3.6 Rayleigh’s instability[48] 15 第四章 實驗結果討論 16 4.1 流場基本特性 16 4.2 擾動之相位分佈 19 4.3 三維量測 21 4.3.1 EEMD拆解出擾動訊號 22 4.3.2 二維擾動的定義 22 4.3.3 二維擾動的觀察 23 4.4 不穩定擾動之特徵頻率 26 第五章 結論與未來建議 28 5.1 結論 28 5.2 未來工作與建議 29 Reference 30

    [1] Nerem, R.M., Seed W.A.,and Wood N.B., “An experimental study of the velocity distribution and transition to turbulence in the aorta,” Journal of fluid Mechanics,vol. 52,part1,pp.137-160, 1972.
    [2] Baek, H., Jayaraman, M. V., Richardardson, P.D.,and Karniadakis, G. E.,“Flow instability and wall shear stress variation in intracranial aneurysms,” Interface,vol.7,pp.967-988, 2010.
    [3] Schlichting, H., “Boundary layer theory,” McGraw-Hill, 1960.
    [4] Rotta, J., “Experimenteller beitrag zur entstehung turbulenter stromung in Rohr” , Ing.-Arch., vol. 24(4), pp. 258-281, 1956.
    [5] Drazin, P. G. and Reid, W. H.,“Hydrodynamic stability,” Cambridge University Press, Cambridge, U. K., (1981).
    [6] Tollmien, W., “The production of turbulence,” NACA Technical Memo. 609, 1931.
    [7] Lin, C. C., “The theory of hydrodynamic stability,” University Press, 1955.
    [8] Schubauer, G. B., and Skramstad, H. K., “Laminar boundary-layer oscillations and transition on a flat plate,” N.A.C.A., A.C.R. Report No.909, 1943.
    [9] Schubauer, G. B., and Skramstad, H. K., “Laminar boundary-layer oscillaions and stability of laminar flow,” Journal of The Aeronautical Sciences, vol. 14, pp. 69-78, 1947.
    [10] Emmons, H. W., “The laminar-turbulent transition in a boundary layer,” AIAA, vol. 18, no. 7, pp. 490-498, 1951.
    [11] Schubauer, G. B., and Klebanoff, P. S., “Contributions on the mechanics of boundary layer transition,” N.A.C.A., Report No.1289, 1956.
    [12] Klebanoff, P. S., and Tidstrom, K. D., “Evolution of amplified waves leading to transition in a boundary layer with zero pressure gradient,” NASA TN D-195, 1959.
    [13] White, F. M., “Viscous fluid flow,” McGraw-Hill, 1911.
    [14] Wygnanski, I. J., and Champagne, F. H., “On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug,” Journal of Fluid Mechanics, vol. 59, no. 02, pp. 281-335, 1973.
    [15] He, S., and Jackson, J. D., “A study of turbulence under conditions of transient flow in a pipe,” Journal of Fluid Mechanics, vol. 408, no. -1, pp. 1-38, 2000.
    [16] Nishihara,K., Nakahata,Y., Ueda, Y., Knisely,C.W., Sasaki, Y. and Iguchi,M., ”Effect of Initial acceleration history on transition to turbulence in pipe flow”, 4th International Symposium on Advanced Fluid/Solid Science and Technology in Experimental Mechanics, pp. 28-30, November 2009.
    [17] Womersley, J. R., ”Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known”, Physiol., vol.127, pp. 553-563, 1955.
    [18] Uchida, S., “The pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in a circular pipe,” Zeitschrift für Angewandte Mathematik und Physik (ZAMP), vol. 7, no. 5, pp. 403-422, 1956.
    [19] Sergeev,S. I., ”Fluid oscillations in pipes at moderate Reynolds numbers”, Mekhanika Zhidkost i Gaza, vol. 1, No. 1, pp. 168-170, 1966.
    [20] Hino, M. and Takasu, S., ”Experiments on turbulence in an oscillatory pipe flow”, in:Proc.18th Conf. Hydraulic Research, Japan Soc. Civil Engng, pp.145, 1974.
    [21] Merkli, P., and Thomann, H., “Transition to turbulence in oscillating pipe flow,” Journal of Fluid Mechanics, vol. 68, no. 03, pp. 567-576, 1975.
    [22] Sarpkaya, T., “Coherent structures in oscillatory boundary layers,” Journal of Fluid Mechanics, vol. 253, no. -1, pp. 105-140, 1993.
    [23] Costamagna, P.,Vittori, G., and Blondeaux, P., “Coherent structures in oscillatory boundary layers,” Journal of Fluid Mechanics, vol. 474, pp. 1-33, 2003.
    [24] Eckman, D. M. and Grotberg, J. B., ”Experiments on transition to turbulence in oscillatory pipe flow”, J. Fluid Mech., vol.222, pp. 329-350, 1994.
    [25] Hino,M., Sawamoto M. and Takasu,S., “Experiments on transition to turbulence in flow an oscillatory pipe flow”, J. Fluid Mech., vol. 75, pp. 193-207, 1976.
    [26] Miller, J. A. and Fejer, A. A., “Transition phenomena in oscillating boundary-layer flows”, vol.18, pp.438-448, June 1964.
    [27] Obremski,H.J.and Fejer,A.A.,’’Transition in oscillating boundary layer flows’’,J.Fluid Mech.,Vol.29,part1, pp.93-111,1967.
    [28] Stettler, J. C. and Fazle Hussain, A. K. M., “On transition of the pulsatile pipe flow”, J. Fluid Mech., vol. 170, pp. 169-197, 1986.
    [29] Ohmi, M., Iguchi, M., and Urahata, I., “Transition to turbulence in a pulsatile pipe flow part 1, Wave forms and distribution of pulsatile velocities near transition region”, Bulletin of the JSME, Vol. 25 No.200, pp. 182-189, February1982
    [30] Ohmi, M., Iguchi, M. and Urahata, I., “Transition to turbulence in a pulsatile pipe flow part 2, Characteristics of reversing flow accompanied by relaminarization”, Bulletin of the JSME, Vol. 25 No.208, pp. 1529-1536, October 1982.
    [31] Iguchi , M., Ohmi, M. and Urahata, I., “Transition to turbulence in a pulsatile pipe flow (3rd report, Flow regimes and the conditions describing the generation and decay of turbulence)”, Bulletin of the JSME, Vol. 27 No.231, pp.1873-1880, September 1984.
    [32] Iguchi, M., Urahata, I. and Ohmi, M., “Turbulent slug and velocity field in the inlet region for pulsatile pipe flow”, JSME International Journal, Vol.30, No. 261, pp. 414-422, 1987.
    [33] Shemer, L., “Laminar- turbulent transition on slowly pulsating pipe flow”, Phys. Fluids 28(12), pp. 3506-3509, December 1985.
    [34] 黃日暉, “應用MEMS熱膜感測器於非定常管流層紊流轉換之初始發展探討,” 成功大學航太所碩士論文(2010), 2010.
    [35] 羅宏森, “應用MEMS熱膜感測器與希爾伯特黃轉換分析脈動式管流之初始不穩定現象,” 成功大學航太所碩士論文(2010), 2010.
    [36] Lo, H. S., and Miau, J. J., “An experimental study on laminar-turbulent transition in a pulsating pipe flow,” Journal of Aeronautics, Astronautics nad Aviations, Series A, vol. 43, no. 1, pp. 17-26, 2011.
    [37] 劉昊, “脈動式管流之初始不穩定現象探討,” 成功大學航太所碩士論文(2011), 2010.
    [38] Jørgensen, F. E.,”How to Measure Turbulence with Hot-wire Anemometers. a practical”, Dantec Dynamics, 2002.
    [39] 杜榮國, “MEMS 熱膜感測器設計製造及應用於探討非定常流動分離現象,” 成功大學航太所碩士論文(2003).
    [40] Bendat, J.S., Piersol, A.G., “Randon data analysis and measurement procedures,” second edition.
    [41] Boashash, B., “Estimating and interpreting the instantaneous frequency of a signal-part 1: Fundamentals,” IEEE, vol. 80, no. 4, 1992.
    [42] Huang, R., and Shen, Z., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” The Royal Society, vol. 454, pp. 903-995, 1998.
    [43] Huang, N. E., Shen, Z., and Long, S. R., “A new view of nonlinear water waves: The Hilbert spectrum,” Annual Review of Fluid Mechanics, vol. 31, no. 1, pp. 417-457, 1999.
    [44] Huang, N. E., “Ensemble empirical mode decomposition : A noise assisted data analysis method,” Advances in Adaptive Data Analysis, vol. 1, pp. 1-41, 2008.
    [45] Huang, N. E., “A review on Hilbert-Huang transform : Method and its applications to geophysical studies,” Reviews of Geophysics, vol. 46, 2007.
    [46] Wu, Z., and Huang, N. E., “A study of the cahracteristics of white noise using the empirical mode decomposition method,” The Royal Society, vol. 460, pp. 1597-1611, 2003.
    [47] Flandrin, P., Rilling, G., and Goncalvews, P., “Empirical mode decomposition as a filter bank,” IEEE Signal Processing Letters, vol. 11, no. 2, pp. 112-114, 2004.
    [48] Mei, C. C., “1.63J/2.21J Fluid dynamics (http://web.mit.edu/1.63/www/Lec-notes/chap5_instability/5-3Rayleigh.pdf),” 2007.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE