簡易檢索 / 詳目顯示

研究生: 楊岱霖
Yang, Tai-Lin
論文名稱: 二甲酚橙鈉鹽/二氧化鈦薄膜用於鈷離子(Co2+)的定量分析與分子動態模擬研究Zn2+和二甲酚橙離子的錯合結構
xylenol orange tetrasodium salt / TiO2 films for quantitative analysis of cobalt ion(Co2+) and coordination of Zn2+ to xylenol orange anion investigated by molecular dynamics simulation
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 96
中文關鍵詞: 二甲酚橙鈉鹽/二氧化鈦薄膜分子動態模擬
外文關鍵詞: molecular dynamics simulation, xylenol orange tetrasodium salt / TiO2 films
相關次數: 點閱:71下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究中,我們使用xylenol orange (XO)染料分子做為Co2+的感測分子。不含Co2+的XO水溶液系統中,酸鹼值會影響XO的紫外-可見光區的吸收,因此以XO水溶液利用顏色變化或紫外可見光區吸收改變來感測Co2+,勢必受到pH的影響。在XO-TiO2薄膜的系統中,TiO2薄膜浸泡於pH ~ 6-7的溶液而得,我們製備不同pH的Co2+溶液且滴在XO-TiO2薄膜上,觀察Co2+/ XO-TiO2薄膜的顯色和滴上Co2+離子與未滴上Co2+離子前後在588nm處的F(R)。在ΔF(R)對pH值的分佈圖上可分成四個特性區間,分別是pH~1-3、pH~5-8、pH~9-11及pH~12-13,每個區間內的薄膜顯色不會有明顯改變且ΔF(R)變動不大,因此我們認為XO-TiO2薄膜在這些區間內具有酸鹼緩衝的能力。同時XO-TiO2薄膜感測不同濃度(pH~7)Co2+所繪成的ΔF(R)對[Co2+]曲線具有好的線性關係。XO-TiO2薄膜系統以肉眼顏色變化偵測[Co2+]的最小極限約是2.24 ppm(mg/L)。最後我們利用分子動態模擬方法探討水溶液系統中XO感測分子與Zn2+離子結合後可能的錯合結構。依據Zn2+離子對XO分子的原子之成對相關函數(pair correlation function),我們推測Zn2+-XO最可能以4個九圓環(9-membered rings)及2個八圓環(8-membered rings)的形式存在。

    In this research, the role of xylenol orange employed as a sensor molecule for Co2+ ions was investigated. The absorption of UV-Vis light of XO molecules in an aqueous solution was significately affected by the pH value. XO-TiO2 films, prepared by immersion of TiO2 films in XO aqueous solutions at pH = 6-7, showed changes in color and reflectance of visible light with addition of Co2+ solutions. It was found that the reflectance change at 588nm (ΔF(R)) due to the addition Co2+ solutions of different pH values could be divided into four ranges, pH~1-3; pH~5-8; pH~9-11; pH~12-13, and the ΔF(R) within each range was about the same. Linear relations of ΔF(R) vs Co2+ concentration were obtained with XO-TiO2 as sensing films. The minimum concentration of Co2+ that could be judged by the color change with naked eyes was ~2.24 ppm(mg/L). Molecular dynamics simulations were employed to study the coordinated structure of Zn2+ in XO aqueous solutions. Based on the most probable distances from the Zn2+ ions to the specific atoms or function groups of XO molecules, the Zn2+-XO complexes might have a structure of four 9-membered rings and two 8-membered rings.

    第一章 緒論............................................1 第二章 感測器原理.......................................4  2.1 分子辨識.........................................4  2.2 感測器組成.......................................7  2.3 基材選擇.........................................10 第三章 染料分子的認識...................................13 3.1 染料發色理論.....................................13 3.2 染料發色的物理與化學機制.........................16 3.3 二甲酚橙( xylenol orange )染料分子介紹...........18 第四章 實驗步驟及方法...................................21 4.1 實驗藥品..........................................21 4.2 實驗方法..........................................22  4.2.1 XO水溶液在不同pH值環境下的紫外-可見吸收......22 4.2.2 含Co2+或Zn2+的XO水溶液的紫外-可見吸收變化....22 4.2.3 TiO2薄膜的製備...............................23 4.2.4 XO-TiO2薄膜的準備及Co2+的吸附偵測............25   4.2.5 TiO2薄膜的酸鹼緩衝(pH buffer)測試..........27   4.2.6 紫外-可見光光譜儀............................28 第五章 結果與討論.......................................29 5.1 酸鹼值對XO水溶液顏色及可見光吸收的影響...........29 5.2 金屬離子對XO水溶液的影響.........................33 5.3 TiO2薄膜的製備...................................40 5.4 TiO2薄膜上XO分子的可見光吸收.....................44  5.5 TiO2薄膜對XO顯色的酸鹼緩衝(pH buffer)能力......46  5.6 含水量對TiO2薄膜上XO顯色的影響...................51  5.7 XO-TiO2薄膜對金屬離子的偵測能力..................53 第六章 Metal-XO錯合物系統結構...........................64  6.1 分子動態模擬原理.................................64 6.2 模擬過程及相關參數設定...........................69 6.3 結果與討論.......................................74 第七章 結論............................................89 參考文獻................................................91 附錄....................................................93

    1 Harris H. H., Pickering I., George G. N., Science, 301, 1203, 2003
    2 林口長庚醫院臨床毒物科主任, 林杰樑, http://www.greencross.org.tw, 綠十字建康網
    3 F. Sancenn, R. Martnez-Mez and Juan Soto, Chem. Commun. 2262–2263, 2001
    4 M. C. Basheer, S. Alex, K. George Thomas, Cherumuttathu H. Suresh and S. Das, Tetrahedron, 62, 605-610, 2006
    5 M. H. Mashhadizadeh , I. Sheikhshoaie, Talanta, 60, 73-80, 2003
    6 E. Palomares, R. Vilar and J. R. Durrant, Chem. Commun. 362-36, 2004
    7 E. Coronado, J. R. Galan-Mascaros, C. Marti-Gastaldo,E. Palomares, J. R. Durrant, R. Vilar, M. Gratzel, Md. K. Nazeeruddin, J. AM. CHEM. SOC. 127, 12351-12356, 2005
    8 H. Zhang, P. Zhang, K. Ye, Y. Sun, S. Jiang, Y. Wang, W. Pang, Journal of Luminescence 117 68-74, 2006
    9 P. C. Ewbank, R. S. Loewe, L. Zhai, J. Reddinger, G. Sauve and R. D. McCullough, Tetrahedron 60, 11269-11275, 2004
    10 A. Corma, M. S. Galletero, H. Garcia, E. Palomares and F. Rey, Chem.Commun. 1100-1101, 2002
    11 H. Miyaji and J. L. Sessler, Angew. Chem. Int. Ed. 40, 154, 2001
    12 A. G. Philip, Coord.Chem.Rev. 240, 191, 2003
    13 E. Palomares, R. Vilar, A. Green, and J. R. Durrant, Adv. Funct. Mater. 14, 2, 111-115, 2004
    14 維基百科, http://en.wikipedia.org/
    15 台灣大學, 王宗興, 分子辨識與感測器
    16 J. W. Steed, J. L. Atwood "Supermolecular Chemistry" John Wiley & Sons, Ltd
    17 L. Prodi et al., Coordination Chemistry Reviews 205, 59-83, 2000
    18 D. H. Shin, Y. G. Ko and U. S. Choi, W. N. Kim , Ind. Eng. Chem. Res. 45, 656-662, 2006,
    19 N. J. van der Veen, S. Flink, M. A. Deij, R. J. M. Egberink, F. C. J. M. van Veggel, and D. N. Reinhoudt. J. Am. Chem. Soc. 122, 6112-6113, 2000
    20 K. S. Suslick, N. A. Rakow, A. Sen, Tetrahedron 60, 11133-11138, 2004
    21 C.T. Kresge, M.E. Leonowicz, J.C. Vartuli, J.S. Beck, Nature 359, 710, 1992
    22 B.J.Scott, G. Wirnsberger, G.D.Stucky, Chem. Mater. 13, 3140-3150, 2001
    23 Matsubara T., Ichikawa Y., Aramaki K., Katagiri A. Solar Energy Materials & Solar Cells 85, 269–275, 2005
    24 B. O'Regan, M. Gratzel, Nature 353, 737, 1991
    25 G. Calleja, D. P. Serrano, R. Sanz, P. Pizarro, and A. Garcia, Ind. Eng. Chem. Res. 43, 2485-2492, 2004
    26 Y. Tachibanaa, Md. K. Nazeeruddinb, M. Gratzelb, D. R. Kluga, J. R. Durranta, Chemical Physics 285, 127–132, 2002
    27 O.A. Zaporozhets, L.Ye. Tsyukalo, Talanta 58, 861-868, 2002
    28 M. Alvaro, C. Aprile, A. Corma,V. Fornes, H. Garcia and E. Peris, Tetrahedron 60, 8257–8263, 2004
    29 A. B. Descalzo, D. Jimnez, J. El Haskouri, D. Beltrn, P. Amors, M. D. Marcos, R. Martnez-Mez and J. Soto Chem. Commun. 562, 2002
    30 R.M. Christie."Colour Chemistry" Royal Society of Chemistry
    31 H. Zollinger, "Color Chemistry:Syntheses, Properties and Applications of Organic Dyes and Pigments" 2nd, revised, VCH, Weinheim
    32 A.T.Peter, H.S.Freeman "Modern Colorants: Synthesis and Structure Advances in Color Chemistry Vol.3" BLACKIE A&P
    33 M.B.Gholivand, F. Bamdad, J. Ghasemi, Talanta 46, 875-884, 1998
    34 A. Hulanicki, S. Glab, G. Ackermann, Pure Appl. Chem. 55, 7, 1137-1230, 1983
    35 O. I. Solovei, T. Ya. Vrublevs'ka, Material Science 40, 1, 148-152, 2004
    36 Craig Gay, James Collins, Janusz M. Gebicki, Analytical Biochemistry 273, 143-148, 1999
    37 Olga Solovey-Vandersteen, Teodoziya Vrublevska, Heinrich Lang, Acta Chim. Slov. 51, 95-106, 2004
    38 成功大學, 謝明治, 二甲酚橙鈉鹽染料分子/二氧化鈦薄膜對鈷離子的感測
    39 M.P. Allen and T. D.Tildesley, Computer Simulation of Liquids, Oxford University Press, Oxford, 1997
    40 D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press, San Diego, 1996
    41 A. Ishida, E. Kaneko, and T. Yotsuyanagi, Chemistry Letters 1999, 351-352
    42 H. Mizuguchi, H. Atsumi, K. Hashimoto, Y. Shimada, Y. Kudo &
    M. Endo, F. Yokota, J. Shida, T. Yotsuyanagi, Analytical Chimica Acta 527, 131-138, 2004
    43 H. Mizuguchi, T. Yotsuyanagi, Analytical Science 17 supplement, i1687-i1689, 2001
    44 Y. Marcus, Chem. Rev. 88, 1475-1498, 1988

    下載圖示 校內:2008-08-06公開
    校外:2008-08-06公開
    QR CODE