簡易檢索 / 詳目顯示

研究生: 楊雅如
Yang, Ya-Ju
論文名稱: 探討CD90相關訊息傳遞在肝癌所扮演之角色
Study on CD90-related signaling pathway in liver cancer
指導教授: 賴明德
Lai, Ming-Derg
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 71
中文關鍵詞: 癌症幹細胞CD90共表達基因THBS2VCAN
外文關鍵詞: Cancer stem cells, CD90, Liver cancer, co-expressed genes
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肝癌為全世界常見的惡性的癌症之一,除了其致死率高以外,其發生率也是逐年攀升。在臨床上治療肝癌的方式通常是利用手術切除搭配化學療法,然而這樣的治療方式對於肝癌病人的死亡率並無法有效地改善。因此,研究更有效治療肝癌的方式以及預防肝癌轉移有助於提升肝癌病人的存活率。近來研究認為在癌細胞裡有一小族群的細胞具有自我更新及分化的能力,並且是造成癌症發生的一個重要因素,將其定義為癌症幹細胞(Cancer stem cells,CSCs)。因此探討癌症幹細胞相關訊息傳遞有助於提供治療癌症成功率。CD90已被視為是肝癌的癌症幹細胞標記(cancer stem cell marker)。然而過去的文獻卻指出CD90在卵巢癌扮演抑癌基因的角色。因此我們透過生物資訊工具Oncomine去分析CD90在20種癌症的信使核醣核酸(messenger RNA)的表現量。確實發現CD90在臨床肝癌病人的表現量上升,且CD90高表現與預後較差相關,相反地在卵巢癌表現量下降,而CD90高表現預後較好。因此我們更進一步分析CD90在肝癌或卵巢癌的共表達基因(co-expressed genes),發現在肝癌中CD90共表達基因大多數為致癌基因(oncogene),相反地在卵巢癌CD90共表達基因則是過去被報導為抑癌基因。因此我們更進一步比較CD90在八種不同癌症中的共表達基因。在這八種癌症中CD90都傾向於扮演致癌基因。利用即時聚合酶鏈式反應(q-PCR)偵測共表達基因在穩定表現CD90細胞株中表現量。THBS2和VCAN表現量在穩定表現CD90中的表現量上升。當我們在過量表現CD90的肝癌細胞株抑制THBS2會降低在軟性瓊膠(soft agar)上的生長,顯示THBS2在參與CD90 所誘發癌化 (carcinogenesis)。此外我們透過IPA預測CD90可能透過鈣離子和MMP2以及HTT影響THBS2,而CD90則可能透過FN1,TGFB1,鈣離子以及STAT3調控VCAN。

    Liver cancer is one of the prevalent cancers with high mortality in the world. The cancer stem cell hypothesis defined that a small population of cancer cells with capacity to self-renew is responsible for tumor formation and relapse. CD90 is a Glycosylphosphatidylinositol-anchored cell surface protein and has been identified as a liver cancer stem cells marker. However, previous studies suggested that CD90 may act as tumor suppressor in ovarian cancer. Therefore, we analyzed the mRNA expression of CD90 in 20 common cancer by using Oncomine databases. The transcriptional level of CD90 is upregulated in liver cancer which is correlated with poor clinical outcome. Conversely, the transcription of CD90 in ovarian cancer is downregulated which is correlated with good prognosis. The profile of CD90 co-expressed genes in liver cancer revealed the oncogenic functional modules. The profile of CD90 co-expressed genes in ovarian cancer is correlated with tumor suppression. The CD90 co-expressed genes in liver, breast, gastric, pancreatic, lung, colon, lymphoma and esophageal cancer were identified and the mRNA expression was validated by q-PCR in liver cancer cell lines. THBS2 and VCAN were upregulated in CD90 transfectants. Knockdown of THBS2 decreased anchorage-independent growth, suggesting that THBS2 was important for CD90-mediated tumor progression. Furthermore, IPA analysis suggested that CD90 may affect THBS2 through calcium, MMP2 and HTT. CD90 may affect VCAN through calcium, STAT3, FN1 and TGFB1.

    Page of list Chinese abstract I English abstract III Acknowledgements IV Table list VII Figure list VIII Abbreviation list IX Introduction 1 I. The challenge of liver cancer 1 II. Cancer stem cell hypothesis 1 III. The functions and regulations of CD90 3 IV. The relationships between CD90 and cancer. 3 V. Specific aims and strategy 5 Material and Method 7 A. Cell culture 7 B. plasmid preparation 12 C. Reverse Transcription Polymerase Chain Reaction 15 D. Real-time PCR; qPCR 17 E. Bioinformatic analysis 19 F. Soft agar colony formation assay 21 Results 22 The expression of CD90 in 20 common cancer is diverse. 22 The high mRNA expression in liver cancer is correlated with poor prognosis. 22 The high mRNA expression in ovarian cancer is correlated with good prognosis. 23 The functions of CD90 co-expressed genes in liver cancer were related to be oncogenic. 24 The functions of CD90 co-expressed genes in ovarian cancer were related to tumor suppression. 24 THBS2 and VCAN were related with CD90 in liver cancer cell lines. 25 THBS2 may be involved in CD90 mediated cancer progression. 26 CD90 may increase the expression of THBS2 through MMP2, calcium and HTT by IPA analysis 26 CD90 may increase the expression of VCAN through fibronectin, TGF-β, calcium and STAT3 by IPA analysis 27 Discussion 29 Conclusion 34 Reference 35 Table 45 Figure 54

    Abeysinghe, H. R., Q. Cao, J. Xu, S. Pollock, Y. Veyberman, N. L. Guckert, P. Keng and N. Wang (2003). "THY1 expression is associated with tumor suppression of human ovarian cancer." Cancer genetics and cytogenetics 143(2): 125-132.

    Ahrberg, C. D. and P. Neužil (2015). "Doubling Throughput of a Real-Time PCR." Scientific reports 5.
    Badea, L., V. Herlea, S. O. Dima, T. Dumitrascu and I. Popescu (2008). "Combined Gene Expression Analysis of Whole-Tissue and Microdissected Pancreatic Ductal Adenocarcinoma identifies Genes Specifically Overexpressed in Tumor Epithelia-The authors reported a Combined Gene Expression Analysis of Whole-Tissue and Microdissected Pancreatic Ductal Adenocarcinoma identifies Genes Specifically Overexpressed in Tumor Epithelia." Hepato-gastroenterology 55(88): 2016.

    Barretina, J., B. S. Taylor, S. Banerji, A. H. Ramos, M. Lagos-Quintana, P. L. Decarolis, K. Shah, N. D. Socci, B. A. Weir, A. Ho, D. Y. Chiang, B. Reva, C. H. Mermel, G. Getz, Y. Antipin, R. Beroukhim, J. E. Major, C. Hatton, R. Nicoletti, M. Hanna, T. Sharpe, T. J. Fennell, K. Cibulskis, R. C. Onofrio, T. Saito, N. Shukla, C. Lau, S. Nelander, S. J. Silver, C. Sougnez, A. Viale, W. Winckler, R. G. Maki, L. A. Garraway, A. Lash, H. Greulich, D. E. Root, W. R. Sellers, G. K. Schwartz, C. R. Antonescu, E. S. Lander, H. E. Varmus, M. Ladanyi, C. Sander, M. Meyerson and S. Singer (2010). "Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy." Nat Genet 42(8): 715-721.

    Basso, K., A. A. Margolin, G. Stolovitzky, U. Klein, R. Dalla-Favera and A. Califano (2005). "Reverse engineering of regulatory networks in human B cells." Nature genetics 37(4): 382-390.

    Brabender, J., R. Lord, R. Metzger, J. Park, D. Salonga, K. Danenberg, P. Danenberg, A. Hölscher and P. Schneider (2003). "Differential SPARC mRNA expression in Barrett's oesophagus." British journal of cancer 89(8): 1508-1512.
    Bredel, M., C. Bredel, D. Juric, G. R. Harsh, H. Vogel, L. D. Recht and B. I. Sikic (2005). "Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas." Cancer research 65(19): 8679-8689.

    Chen, X., S. Y. Leung, S. T. Yuen, K.-M. Chu, J. Ji, R. Li, A. S. Chan, S. Law, O. G. Troyanskaya and J. Wong (2003). "Variation in gene expression patterns in human gastric cancers." Molecular biology of the cell 14(8): 3208-3215.

    Cho, J. Y., J. Y. Lim, J. H. Cheong, Y.-Y. Park, S.-L. Yoon, S. M. Kim, S.-B. Kim, H. Kim, S. W. Hong and Y. N. Park (2011). "Gene expression signature–based prognostic risk score in gastric cancer." Clinical Cancer Research 17(7): 1850-1857.

    Compagno, M., W. K. Lim, A. Grunn, S. V. Nandula, M. Brahmachary, Q. Shen, F. Bertoni, M. Ponzoni, M. Scandurra and A. Califano (2009). "Mutations of multiple genes cause deregulation of NF-&kgr; B in diffuse large B-cell lymphoma." Nature 459(7247): 717-721.

    del Pozo Martin, Y., D. Park, A. Ramachandran, L. Ombrato, F. Calvo, P. Chakravarty, B. Spencer-Dene, S. Derzsi, C. S. Hill and E. Sahai (2015). "Mesenchymal Cancer Cell-Stroma Crosstalk Promotes Niche Activation, Epithelial Reversion, and Metastatic Colonization." Cell reports 13(11): 2456-2469.

    Dick, D. (1997). "Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell." Nature Med 3: 730-737.

    El-Serag, H. B. (2012). "Epidemiology of viral hepatitis and hepatocellular carcinoma." Gastroenterology 142(6): 1264-1273. e1261.

    Fierro, A. C., F. Vandenbussche, K. Engelen, Y. V. de Peer and K. Marchal (2008). "Meta analysis of gene expression data within and across species." Current genomics 9(8): 525-534.

    Gaedcke, J., M. Grade, K. Jung, J. Camps, P. Jo, G. Emons, A. Gehoff, U. Sax, M. Schirmer and H. Becker (2010). "Mutated KRAS results in overexpression of DUSP4, a MAP‐kinase phosphatase, and SMYD3, a histone methyltransferase, in rectal carcinomas." Genes, Chromosomes and Cancer 49(11): 1024-1034.

    Goldenberg, D., S. Ayesh, T. Schneider, O. Pappo, O. Jurim, A. Eid, Y. Fellig, T. Dadon, I. Ariel and N. de Groot (2002). "Analysis of differentially expressed genes in hepatocellular carcinoma using cDNA arrays." Molecular carcinogenesis 33(2): 113-124.

    Grosse‐Gehling, P., C. A. Fargeas, C. Dittfeld, Y. Garbe, M. R. Alison, D. Corbeil and L. A. Kunz‐Schughart (2013). "CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges." The Journal of pathology 229(3): 355-378.

    Hao, Y., G. Triadafilopoulos, P. Sahbaie, H. S. Young, M. B. Omary and A. W. Lowe (2006). "Gene expression profiling reveals stromal genes expressed in common between Barrett’s esophagus and adenocarcinoma." Gastroenterology 131(3): 925-933.

    Hermosilla, T., D. Muñoz, R. Herrera-Molina, A. Valdivia, N. Muñoz, S.-U. Nham, P. Schneider, K. Burridge, A. F. Quest and L. Leyton (2008). "Direct Thy-1/α V β 3 integrin interaction mediates neuron to astrocyte communication." Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1783(6): 1111-1120.

    Ho, D. W., Z. F. Yang, K. Yi, C. T. Lam, M. N. Ng, W. C. Yu, J. Lau, T. Wan, X. Wang and Z. Yan (2012). "Gene expression profiling of liver cancer stem cells by RNA-sequencing." PloS one 7(5): e37159.
    Hong, Y., T. Downey, K. W. Eu, P. K. Koh and P. Y. Cheah (2010). "A ‘metastasis-prone’signature for early-stage mismatch-repair proficient sporadic colorectal cancer patients and its implications for possible therapeutics." Clinical & experimental metastasis 27(2): 83-90.

    Hsu, C.-W., J.-S. Yu, P.-H. Peng, S.-C. Liu, Y.-S. Chang, K.-P. Chang and C.-C. Wu (2014). "Secretome profiling of primary cells reveals that THBS2 is a salivary biomarker of oral cavity squamous cell carcinoma." Journal of proteome research 13(11): 4796-4807.

    Japan, L. C. S. G. o. (1990). "Primary liver cancer in Japan. Clinicopathologic features and results of surgical treatment." Annals of surgery 211(3): 277.
    Jones, J., H. Otu, D. Spentzos, S. Kolia, M. Inan, W. D. Beecken, C. Fellbaum, X. Gu, M. Joseph and A. J. Pantuck (2005). "Gene signatures of progression and metastasis in renal cell cancer." Clinical Cancer Research 11(16): 5730-5739.

    Kaiser, S., Y.-K. Park, J. L. Franklin, R. B. Halberg, M. Yu, W. J. Jessen, J. Freudenberg, X. Chen, K. Haigis and A. G. Jegga (2007). "Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer." Genome biology 8(7): R131.

    Kim, S. M., Y. Y. Park, E. S. Park, J. Y. Cho, J. G. Izzo, D. Zhang, S. B. Kim, J. H. Lee, M. S. Bhutani, S. G. Swisher, X. Wu, K. R. Coombes, D. Maru, K. K. Wang, N. S. Buttar, J. A. Ajani and J. S. Lee (2010). "Prognostic biomarkers for esophageal adenocarcinoma identified by analysis of tumor transcriptome." PLoS One 5(11): e15074.
    Kischel, P., D. Waltregny, B. Dumont, A. Turtoi, Y. Greffe, S. Kirsch, E. De Pauw and V. Castronovo (2010). "Versican overexpression in human breast cancer lesions: known and new isoforms for stromal tumor targeting." International Journal of Cancer 126(3): 640-650.

    Le Bail, B., S. Faouzi, L. Boussarie, J. Guirouilh, J. F. Blanc, J. Carles, P. Bioulac‐Sage, C. Balabaud and J. Rosenbaum (1999). "Osteonectin/SPARC is overexpressed in human hepatocellular carcinoma." The Journal of pathology 189(1): 46-52.

    Lei, X., C.-W. Guan, Y. Song and H. Wang (2015). "The multifaceted role of CD146/MCAM in the promotion of melanoma progression." Cancer cell international 15(1): 1.

    Liu, X. and D. Fan (2015). "The epithelial-mesenchymal transition and cancer stem cells: functional and mechanistic links." Current pharmaceutical design 21(10): 1279-1291.

    Lu, J.-W., J.-G. Chang, K.-T. Yeh, R.-M. Chen, J. J. Tsai and R.-M. Hu (2011). "Overexpression of Thy1/CD90 in human hepatocellular carcinoma is associated with HBV infection and poor prognosis." Acta histochemica 113(8): 833-838.

    Ma, X.-J., S. Dahiya, E. Richardson, M. Erlander and D. C. Sgroi (2009). "Gene expression profiling of the tumor microenvironment during breast cancer progression." Breast Cancer Research 11(1): 1-18.

    Medema, J. P. (2013). "Cancer stem cells: the challenges ahead." Nature cell biology 15(4): 338-344.
    Nagashima, T., J. Kim, Q. Li, J. P. Lydon, F. J. DeMayo, K. M. Lyons and M. M. Matzuk (2011). "Connective tissue growth factor is required for normal follicle development and ovulation." Molecular endocrinology 25(10): 1740-1759.

    Piccaluga, P. P., C. Agostinelli, A. Califano, M. Rossi, K. Basso, S. Zupo, P. Went, U. Klein, P. L. Zinzani and M. Baccarani (2007). "Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets." The Journal of clinical investigation 117(3): 823-834.

    Radvanyi, L., D. Singh-Sandhu, S. Gallichan, C. Lovitt, A. Pedyczak, G. Mallo, K. Gish, K. Kwok, W. Hanna and J. Zubovits (2005). "The gene associated with trichorhinophalangeal syndrome in humans is overexpressed in breast cancer." Proceedings of the National Academy of Sciences of the United States of America 102(31): 11005-11010.

    Rege, T. A. and J. S. Hagood (2006). "Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis." The FASEB journal 20(8): 1045-1054.

    Rosenwald, A., G. Wright, W. C. Chan, J. M. Connors, E. Campo, R. I. Fisher, R. D. Gascoyne, H. K. Muller-Hermelink, E. B. Smeland and J. M. Giltnane (2002). "The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma." New England Journal of Medicine 346(25): 1937-1947.

    Saalbach, A., A. Wetzel, U.-F. Haustein, M. Sticherling, J. C. Simon and U. Anderegg (2005). "Interaction of human Thy-1 (CD 90) with the integrin αvβ3 (CD51/CD61): an important mechanism mediating melanoma cell adhesion to activated endothelium." Oncogene 24(29): 4710-4720.

    Scheel, C. and R. A. Weinberg (2012). Cancer stem cells and epithelial–mesenchymal transition: concepts and molecular links. Seminars in cancer biology, Elsevier.

    Shipitsin, M. and K. Polyak (2008). "The cancer stem cell hypothesis: in search of definitions, markers, and relevance." Laboratory Investigation 88(5): 459-463.

    Skrzypczak, M., K. Goryca, T. Rubel, A. Paziewska, M. Mikula, D. Jarosz, J. Pachlewski, J. Oledzki and J. Ostrowsk (2010). "Modeling oncogenic signaling in colon tumors by multidirectional analyses of microarray data directed for maximization of analytical reliability." PloS one 5(10): e13091.

    Storz, M. N., M. van de Rijn, Y. H. Kim, S. Mraz-Gernhard, S. Kohler and R. T. Hoppe (2003). "Gene expression profiles of cutaneous B cell lymphoma." Journal of investigative dermatology 120(5): 865-870.

    Streit, M., L. Riccardi, P. Velasco, L. F. Brown, T. Hawighorst, P. Bornstein and M. Detmar (1999). "Thrombospondin-2: a potent endogenous inhibitor of tumor growth and angiogenesis." Proceedings of the National Academy of Sciences 96(26): 14888-14893.

    Sun, H. (2016). "Identification of key genes associated with gastric cancer based on DNA microarray data." Oncology Letters 11(1): 525-530.

    Sun, R., J. Wu, Y. Chen, M. Lu, S. Zhang, D. Lu and Y. Li (2014). "Down regulation of Thrombospondin2 predicts poor prognosis in patients with gastric cancer." Molecular cancer 13(1): 1.

    Tang, K. H., Y. D. Dai, M. Tong, Y. P. Chan, P. S. Kwan, L. Fu, Y. R. Qin, S. W. Tsao, H. L. Lung and M. L. Lung (2013). "A CD90+ tumor-initiating cell population with an aggressive signature and metastatic capacity in esophageal cancer." Cancer research 73(7): 2322-2332.

    Thomas, R., L. D. True, J. A. Bassuk, P. H. Lange and R. L. Vessella (2000). "Differential expression of osteonectin/SPARC during human prostate cancer progression." Clinical Cancer Research 6(3): 1140-1149.

    Touab, M., J. Villena, C. Barranco, M. Arumí-Uría and A. Bassols (2002). "Versican is differentially expressed in human melanoma and may play a role in tumor development." The American journal of pathology 160(2): 549-557.
    Tsai, M.-J., W.-A. Chang, M.-S. Huang and P.-L. Kuo (2014). "Tumor microenvironment: A new treatment target for cancer." ISRN biochemistry 2014.

    Wang, B. and S. T. Jacob (2011). "Role of cancer stem cells in hepatocarcinogenesis." Genome Med 3(2): 11.
    Wang, K., X. Wu, J. Wang and J. Huang (2013). "Cancer stem cell theory: therapeutic implications for nanomedicine." Int J Nanomedicine 8: 899-908.

    Wang, Q., Y.-G. Wen, D.-P. Li, J. Xia, C.-Z. Zhou, D.-W. Yan, H.-M. Tang and Z.-H. Peng (2012). "Upregulated INHBA expression is associated with poor survival in gastric cancer." Medical Oncology 29(1): 77-83.

    Wong, C. C. L., A. P. W. Tse, Y. P. Huang, Y. T. Zhu, D. K. C. Chiu, R. K. H. Lai, S. L. K. Au, A. K. L. Kai, J. M. F. Lee and L. L. Wei (2014). "Lysyl oxidase‐like 2 is critical to tumor microenvironment and metastatic niche formation in hepatocellular carcinoma." Hepatology 60(5): 1645-1658.

    Wu, Z., Z. Wu, J. Li, X. Yang, Y. Wang, Y. Yu, J. Ye, C. Xu, W. Qin and Z. Zhang (2012). "MCAM is a novel metastasis marker and regulates spreading, apoptosis and invasion of ovarian cancer cells." Tumor Biology 33(5): 1619-1628.

    Wurmbach, E., Y. b. Chen, G. Khitrov, W. Zhang, S. Roayaie, M. Schwartz, I. Fiel, S. Thung, V. Mazzaferro and J. Bruix (2007). "Genome‐wide molecular profiles of HCV‐induced dysplasia and hepatocellular carcinoma." Hepatology 45(4): 938-947.

    Yamashita, T., M. Honda, Y. Nakamoto, M. Baba, K. Nio, Y. Hara, S. S. Zeng, T. Hayashi, M. Kondo and H. Takatori (2013). "Discrete nature of EpCAM+ and CD90+ cancer stem cells in human hepatocellular carcinoma." Hepatology 57(4): 1484-1497.

    Yang, Z. F., D. W. Ho, M. N. Ng, C. K. Lau, W. C. Yu, P. Ngai, P. W. Chu, C. T. Lam, R. T. Poon and S. T. Fan (2008). "Significance of CD90+ cancer stem cells in human liver cancer." Cancer cell 13(2): 153-166.

    Yin, S., J. Li, C. Hu, X. Chen, M. Yao, M. Yan, G. Jiang, C. Ge, H. Xie and D. Wan (2007). "CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity." International journal of cancer 120(7): 1444-1450.

    Yoshihara, K., A. Tajima, D. Komata, T. Yamamoto, S. Kodama, H. Fujiwara, M. Suzuki, Y. Onishi, M. Hatae and K. Sueyoshi (2009). "Gene expression profiling of
    advanced‐stage serous ovarian cancers distinguishes novel subclasses and implicates ZEB2 in tumor progression and prognosis." Cancer science 100(8): 1421-1428.

    Zhao, H., A. Langerød, Y. Ji, K. W. Nowels, J. M. Nesland, R. Tibshirani, I. K. Bukholm, R. Kåresen, D. Botstein and A.-L. Børresen-Dale (2004). "Different gene expression patterns in invasive lobular and ductal carcinomas of the breast." Molecular biology of the cell 15(6): 2523-2536.

    無法下載圖示 校內:2021-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE