| 研究生: |
葉修銘 Yeh, Hsiu-Ming |
|---|---|
| 論文名稱: |
以幾何模擬法分析微機電製程與建立其電腦輔助設計模組 Modeling of Fabrication Procedures and Developing of Process Emulators using Solid Modeling Approach for Microelectromechanical Systems (MEMS) Applications |
| 指導教授: |
陳國聲
Chen, Kuo-Shen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | 微製程 、製程模擬 、幾何模擬 、微機電系統 、電腦輔助設計 |
| 外文關鍵詞: | Microelectromechanical Systems (MEMS), solid modeling, process emulation, microfabrication, computer aided design (CAD) |
| 相關次數: | 點閱:93 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微機電系統在目前的科技發展中扮演著重要的地位,在微機電系統的設計製作過程中,適當運用電腦輔助設計將可大幅度減少重新設計與試做的過程,並藉由專家的經驗所建立的軟體環境,來建構虛擬原型的開發與迅速地評估設計變更的效果及產品的製造和效率,得以加速實體成品的開發時間。因此,本論文之目標在於建立合理的微機電製程模擬之方法與流程及正確的微製程與幾何模擬相對應之建構方法,以克服目前微機電製程模擬軟體無法達成之模擬。
在目前的微機電模擬軟體方面,其功能並不是很完善且擴充性不佳,限制了其在小企業與學術界之應用性。由於微機電製程基本上為類3D之結構增減過程,其特性可以幾何模擬系統表示,實體模擬的觀念即是將每一個製程的步驟對應到一幾何成形的動作,也就是將所有的製程看成是一連串幾何成長與挖除的過程;本論文明確建立了微機電製程與幾何模擬間之對應關係,並利用3D幾何模擬軟體作為發展製程模擬器之載具,結合其幾何建構指令將微機電製程技術進行程式編譯以完成模型建立。除了針對一般之微機電製程技術外並整合微機電共用晶片製程,如Cronos MUMPs、探微科技之SMart、清大之MPMC等共用晶片製程,以及LIGA製程與準分子雷射製程等微製造技術於本製程模擬器中,以改善現有微機電製程軟體之不足,提供一成本低且功能較完善的製程模擬器。
除此之外,本論文也針對微機電系統之設計流程提出一整合構想,並初步完成參數化設計以及參數尺寸研究之模型建立模組,以利於分析模型的取得與分析後之設計變更,其將有助於微機電系統設計合成與驗證分析之整合研究。
Computer aided design (CAD) is a key issue for the development of all engineering products in order to reduce the cost and to accelerate updating of products. However, the current commercial process simulation tools are all very expensive, short of certain capabilities, and lack of flexibility to adapt new fabrication processes. These problems impose severe constraints for microelectromechanical systems (MEMS) design and fabrication and an alternative solution should be found to solve these issues. Unlike mechanical design, which usually yields truly 3-D objects, the 2-D extruded nature of MEMS fabrication process makes itself extremely suitable to represent the processes by using automatic solid modeling flow. In this thesis, the correlation between individual fabrication process and their corresponding solid modeling procedure is established and a rational process emulation flow is proposed. Following the proposed emulation flow, a process emulation tool, called NCKU Z-Fabricator (Z-Fab), has been created by integrating commercial solid modelers with a self-programmed interface protocol. In Z-Fab, several standard process modules, such as MUMPs (of Cronos Corp.), MPMC (of NTHU), and SMart (of tMt Corp.) have also been also successfully developed for industrial users. In addition to traditional MEMS processes, modules for LIGA and excimer laser micromachining are also presented and demonstrated. Finally, in order to serve as a key connector in the future top-down and bottom-up design analysis; a parametric study tool is also developed to allow the building of virtual device with certain parameter variations to reduce the design iteration cycle. In comparison with the commercial MEMS emulators such as Designer of CoventorWare, NCKU Z-Fab is cheaper, much capable, and more flexible. In addition, the solid modeling correlation and the emulation flow established in this thesis potentially allow researchers or users to build their own MEMS fabrication emulator using their own CAD systems and therefore this reduce the software cost, increase the flexibility of emulation, and enhance the competition of products.
[1] I. Schneegaß and J. M. Köhler, “Flow-through polymerase chain reactions in chip thermocyclers,” Reviews in Molecular Biotechnology, Vol. 82, pp. 101-121, 2001.
[2] C. Marxer, C. Thio, M.-A. Gretillat, N.F. de Rooij, R. Battig, O. Anthamatten, B. Valk, and P. Vogel, “Vertical Mirrors Fabricated by Deep Reactive Ion Etching for Fiber-Optic Switching Applications,” J. Microelectromech. Syst., Vol. 6, No. 3, pp. 277-285, September 1997.
[3] P. M. Zavracky, S. Majumder, and N. E. McGruer, “Micromechanical switches fabricated using nickel surface machining,” J. Microelectromech. Syst., Vol. 6, pp. 3-9, 1997.
[4] G. Koppelman, “OYSTER, A Three-Dimensional Structural Simulator for Microelectromechanical Design,” Sensors and Actautors, Vol. 20, pp. 179-185, 1989.
[5] S. D. Senturia, R. M. Harris, B. P. Johnson, S. Kim, K. Nabors, M. A. Shulman, and J. K. White, “A computer-aided design system for microelectromechanical systems (MEMCAD),” J. Microelectromech. Syst., Vol. 1, No. 1, March 1992.
[6] K. S. Chen, C. J. Cheng, and H. M. Yeh, “Development of Microelectromechanical System Fabrication Emulator by Solid Modeling Technology,” J. Chin. Soc. Mech. Eng., Vol. 23, No. 6, pp. 525-532, 2002.
[7] 黎立民,微機電製程模組與機電耦合之分析,國立成功大學機械系碩士論文,2002。
[8] 姚志民,“電腦輔助微機電系統設計與分析”,科技發展月刊,第三期,pp. 174-179,2001。
[9] 楊燿州,“Modeling of Microsystems”,台南成功大學微機電所專題演講,2004年3月3日。
[10] CoventorWare: http://www.coventor.com/
[11] IntelliSuite: http://www.intellisensesoftware.com/
[12] MEMS Pro: http://www.memscap.com/cad-memspro-ds.html
[13] ACES: http://mass.micro.uiuc.edu/research/completed/aces/
[14] SIMPLer: http://www.ocf.berkeley.edu/~hhile/SIMPLer/SIMPLer.html
[15] N. R. Lo and K. S. J. Pister, “3D MEMS Design via Matlab Interactive Plots,” Modeling and Simulation of Microsystems, pp. 696-699, 2000.
[16] D. L. DeVoe, S. B. Green, and J. M. Jump, “Automated Solid Model Extraction for MEMS Visualization,” Proc. Int. Conf. pp. 292-297, 1998.
[17] E. K. Antonsson, “Structured Design Methods for MEMS,” in NSF Sponsored Workshop on Structured Design Methods for MEMS Final Report, pp. 53, 1996.
[18] H. Li and E. K. Antonsson, “Mask-Layout Synthesis Through an Evolutionary Algorithm,” Modeling and Simulation of Microsystems, pp. 113-116, 1999.
[19] M. K. Long, J. W. Burdick, and E. K. Antonsson, “Design of Compensation Structures for Anisotropic Etching,” Modeling and Simulation of Microsystems, pp. 124-127, 1999.
[20] L. Ma and E. K. Antonsson, “Automated Mask-Layout and Process Synthesis for MEMS,” Modeling and Simulation of Microsystems, pp. 20-23, 2000.
[21] L. Ma and E. K. Antonsson, “Robust Mask-Layout Synthesis for MEMS,” Modeling and Simulation of Microsystems, Vol. 1, pp. 128-131, 2001.
[22] G. K. Fedder, S. Iyer, and T. Mukherjee, “Automated optimal synthesis of microresonators” 9th Int’l. Conf. on Solid State Sensors and Actuators, Vol. 2, pp. 1109-1112, 1997.
[23] G. K. Fedder, “Structured design of integrated MEMS,” 12th Int’l. Conf. on Micro Electro Mechanical Systems, IEEE, pp. 1-8, 1999.
[24] T. Mukherjee, Y. Zhou, and G. K. Fedder, “Automated optimal synthesis of microaccelerometers,” 12th Int’l. Conf. on Micro Electro Mechanical Systems, IEEE, pp. 326-331, 1999.
[25] K. S. Chen, L. M. Li, and K. S. Ou, “Accuracy Assessment of Simplified Electromechanical Coupling Solvers for MEMS Applications” J. of Micromechanics and Microengineering, Vol. 14, pp. 159-169, 2004.
[26] R. C. Jaeger, Introduction to Microelectronic Fabrication, 2nd ed., Prentice Hall, 2002.
[27] G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk Micromachining of Silicon,” Proceedings of the IEEE, Vol. 86, No. 8, pp. 1536-1551, August, 1998.
[28] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface Micromachining for Microelectromechanical Systems,” Proceedings of the IEEE, Vol. 86, No. 8, pp. 1552-1574, August, 1998.
[29] K. S. J. Pister, M. W. Judy, S. R. Burgett, and R. S. Fearing, “Microfabricated Hinges,” Sensors and Actuators A, Vol. 33, pp. 249-256, 1992.
[30] H. Guckel, “High-Aspect-Ratio Micromachining Via Deep X-Ray Lithography,” Proceedings of the IEEE, Vol. 86, No. 8, pp. 1586-1593, August, 1998.
[31] Z. Zhu and C. Liu, “Anisotropic Crystalline Etching Simulation using a Continuous Cellular Automata Algorithm,” ASME Symposium on Computer Aided Simulation of MEMS, Aneheim, CA, Nov. 1998.
[32] Z. Zhu and C. Liu, “Micromachining Process Simulation Using a Continuous Cellular Automata Method,” J. Microelectromech. Syst., Vol. 9, No. 2, pp. 252-261, June, 2000.
[33] M. H. Lawry, I-DEAS/Student Guide, SDRC, 2000.
[34] 尤春風,CATIA V5 使用手冊,知城數位科技股份有限公司出版,2002。
[35] 林清安,PRO-E 2000 零件設計基礎篇,知城數位科技股份有限公司出版,2000。
[36] V. Ananthakrishnan, R. Sarma, and G. K. Ananthasuresh, “Systematic Mask Synthesis for Surface Micromachined Microelectromechanical Systems,” J. of Micromechanics and Microengineering, Vol. 13, pp. 927-941, 2003.
[37] 盧佑銘,積體電路設計Tanner Tools L-Edit,台科大圖書股份有限公司,2000。
[38] LinkCAD: http://www.linkcad.com/
[39] formZ_RR: http://www.formz.com/
[40] 微機電系統技術與應用,行政院國家科學委員會精密儀器發展中心主編,pp.185,2003。
[41] D. A. Koester, R. Mahadevan, B. Hardy, and K. W. Markus, MUMPs Design Handbook Rev.7.0, MCNC, 2001.
[42] Y. P. Ho, P. T. Liu, C. C. Lo, and H. Y. Lin, SMart Design Handbook Rev.2.2, Walsin Lihwa Corp., 2003.
[43] 黃瑞星,黃義佑,陳建亨,微機電共用晶片設計與製作規範,Rev. 3,國科會中區微機電系統研究中心,2003。
[44] 郭晉良,準分子雷射加工微型3D立體結構,國立成功大學機械系碩士論文,2002。
[45] L. S. Fan, Y. C. Tai, and R. S. Muller, “IC-Processed Electrostatic Micromotors,” Sensors and Actuators, Vol. 20, pp. 41-47, 1989.
[46] Y. C. Tai and R. S. Muller, “IC-Processed Electrostatic Synchronous Micromotors,” Sensors and Actuators, Vol. 20, pp. 49-55, 1989.
[47] M. Mehregany, S. D. Senturia, J. H. Lang, and P. Nagarkar, “Micromotor fabrication,” IEEE Trans. Electron Devices, Vol. 39, pp. 2060-2069, 1992.
[48] J. W. Judy, “Microelectromechanical systems (MEMS): fabrication, design and applications,” Smart Materials and Structures, Vol. 10, pp. 1115-1134, 2001.
[49] W. Fang and J.A. Wickert, “Comments on measuring thin-film stresses using bi-layer micromachined beams” J. of Micromechanics and Microengineering, Vol. 5, No. 4, pp. 276-281, 1995.
[50] W. Fang and J.A. Wickert, “Post buckling of micromachined beams” J. of Micromechanics and Microengineering, Vol. 4, No. 3, pp. 116-122, 1994.
[51] P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-Based Projection Display,” Proceedings of the IEEE, Vol. 86, No. 8, pp. 1687-1704, August, 1998.
[52] H. H. Hu, H. Y. Lin, W. Fang, and B. C. S. Chou, “The Diagnostic Micromachined Beams on (1 1 1) Substrate,” Sensors and Actuators A, Vol. 93, pp. 258-265, 2001.
[53] W. P. Lai and W. Fang, “Novel Bulk Acoustic Wave Hammer to Determinate the Dynamic Response of Microstructures Using Pulsed Broad Bandwidth Ultrasonic Transducers,” Sensors and Actuators A, Vol. 96, pp. 43-52, 2002.
[54] J. J. Gill, L. V. Ngo, P. R. Nelson, and C. J. Kim, “Elimination of Extra Spring Effect at the Step-Up Anchor of Surface-Micromachined Structure,” J. Microelectromech. Syst., Vol. 7, pp. 114-121, 1998.
[55] 方維倫,微機電微結構特性共用測試結構,電子微機電零組件發展平台技術研討及發表會,台南成功大學,2004年3月24日。
[56] N. D. Masters, M. P. de Boer, B. D. Jensen, M. S. Baker, and D. Koester, “Side-by-Side Comparison of Passive MEMS Strain Test Structures under Residual Compression,” American Society for Testing and Materials, 2001.
[57] 楊啟榮,SU-8厚膜光阻於微系統UV-LIGA製程的應用,科儀新知,Vol. 20,1999。
[58] 陳峻明、李永春、吳俊穎、黃建富、楊智傑,準分子雷射LIGA-Like製造及其應用,第三屆精密機械製造研討會論文,高雄中山大學,2003。
[59] 陳峻明,折射式微透鏡之準分子雷射LIGA製程開發與光學檢測,國立成功大學機械系碩士論文,2004。
[60] S. D. Senturia, Microsystem Design, Kluwer Academic Press, 2000.
[61] Y. Zhou, Layout Synthesis of Accelerometers, Master Thesis, Department of Electrical and Computer Engineering, Carnegie Mellon University, 1998.
[62] P. M. Zavracky, N. E. McGruer, R. H. Morrison, G. Jenkins, and K. Warner "Microswitches for Microwave and Other Applications," Sensors, Vol. 15, No. 4, pp. 41, 1998.
[63] P. M. Zavracky, S. Majumder, and N. E. McGruer, “Micromechanical Switches Fabricated Using Nickel Surface Machining,” J. Microelectromech. Syst., Vol. 6, pp. 3-9, 1997.
[64] D. Bloom, “The Grating Light Valve: Revolutionizing Display Technology,” Projection Displays III Symposium, SPIE Proceedings Vol. 3013, February 1997.