| 研究生: |
黃富耑 Huang, Fu-Jhuan |
|---|---|
| 論文名稱: |
利用整流天線以及微機電線圈設計遠場與近場的無線傳能系統 Design of Wireless Powering System for Far-field by rectenna and for Near-field by MEMS Coil |
| 指導教授: |
羅錦興
Luo, Ching-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 無線傳能、整流天線、電感耦合、微機電 |
| 外文關鍵詞: | rectenna, wireless powering, MEMS, inductive coupling |
| 相關次數: | 點閱:113 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文為研究應用於生醫上的無線傳能系統,大致上可分為兩部分,第一部分為無線傳能系統在遠場的應用—整流天線設計;第二部份則是無線傳能系統在近場的應用—電感耦合式傳能電路設計。
在第一部份,我們將探討無線傳能系統的關鍵元件—整流天線的設計。整流天線包含了遠場天線以及整流電路。利用2.45GHz迴路天線做為能量的接收並與整流電路連接成一個在低功率下有良好靈敏度的整流天線。當負載電阻為6Kohm且輸入功率為11dBm時可得到最佳化的效率為59.4%,輸出電壓為6.7V 。
第二部份則為近場天線的應用,利用兩組線圈來做磁場耦合,設計成一無線傳能系統,其中包含外部電路,也就是功率放大器;與可植入式電路,整流電路與充電電路。在這裡我們利用IRF540 MOSFET與繞線電感製作E類的功率放大器,而接收端利用繞線電感加上一電容使其產生諧振頻率在1MHz,作為接收天線。在距離為10mm時可在負載電阻端得到直流電壓46.3伏以及整體效率31%。
由於要適用於人體植入,所以電子裝置必須要能夠縮小體積。在這裡我們採用微機電技術,在矽晶圓和玻璃上製作微型電感,作為接收天線使用。我們所製作的微型電感線寬為50um,最外圈邊長為10mm,圈數為10。在量測能量傳遞時可在負載電阻端得到1.8伏的電壓。
最後,我們將討論利用遠場或近場設計的無線傳能系統的優缺點以及利用微機電技術製作電感耦合線圈的可行性和與CMOS積體電路整合的可行性。
A design of wireless powering system (WPS) for biomedical application is presented in this thesis. The article is composed of two major topics. One is the WPS design in far-field application. The other is the WPS design in near-field application.
First, we studied the WPS design in far-field applications which the key component is rectenna. Rectenna contains two units, far-field antenna and rectifier circuit. A 2.45 GHz loop antenna is designed to receive energy and integrated RF rectifier with a good sensitivity in low power application. The optimum RF-to-DC conversion efficiency is 59.4% at 11 dBm input RF power as well as 6.7 V output DC voltages on a 6 KΩ load resistance.
Second, the study of the WPS design in near-field application is presented. Here we adopt coils for power transmission by inductive coupling. It contains external circuit design—power amplifier design, and the receiver for implantable circuit design—LC-tank resonator, rectifier and charge circuit. The class-E power amplifier was designed by using IRF540 MOSFET and coils. In the implantable circuit, the coil and capacitor made up a resonator at 1MHz as receiving antenna. At the distance is 10 mm, we can get DC voltage is 46.3 V on load resistor and total efficiency is 31%.
In order to apply WPS to human implantable devices, the miniaturized devices are needed. The MEMS (Micro electric Machine System) coils are fabricated on the silicon wafer and glass here as receiving implanted antenna. The line-width, side, and turns of proposed micro-machined coil is 50 um, 10 mm and 10. In the measurement of energy transmission, we could get DC voltage at resistor is 1.8V.
Finally, we will discuss the excellences and defects of WPS in far-field and near-field design as well as the feasibility of using MEMS technique to fabricate coil for inductive coupling while combining them with CMOS integrated circuit.
[1] http://fescenter.case.edu
[2] V. Srovnal, M. Penhaker, “Health Maintenance Embedded Systems in Home Care Applications.” International Conference on Systems, pp. 17 April 2007
[3] H. Marko, M.K. Maija, “Wireless System for Patient Home Monitoring.” International Symposium on Wireless Pervasive Computing, Feb. 2007
[4] http://www.ucsfhealth.org
[5] http://www.sjm.com
[6] W. Liu et al., “A Neuro-Stimulus Chip with Telemetry Unit for Retinal Prosthetic Device,” IEEE J. Solid State Circuits, vol. 35, pp. 1487-1497, Oct. 2000
[7] http://www.jyi.org
[8] http://www.webmd.com
[9] R. Saleh et al., “System-on-Chip: Reuse and Integration” Proc. IEEE, vol. 94, no. 6, pp. 1050-1069, Jun. 2006
[10] Balanis, Antenna theory, 3rd edition
[11] Klaus Finkenzeller, RFID Handbook, 2nd edition
[12] P. E. Glaser, “An overview of the solar power satellite option,” IEEE Trans. Microwave Theory Tech., vol. 40, no. 6, pp. 1230–1238, Jun. 1992
[13] W. C. Brown, “The history of power transmission by radio waves,” IEEE Trans. Microwave Theory Tech., vol. 32, no. 9, pp. 1230–1242, Sep. 1984
[14] L. W. Epp, A. R. Khan, H. K. Smith, R. P. Smith, “A compact dualpolarized 8.51-GHz rectenna for high-voltage (50 V) actuator applications,” IEEE Trans. Microwave Theory Tech., vol. 48, no. 1, pp. 111–120, Jan. 2000
[15] M. Ali, G. Yang, R. Dougal, “A new circularly polarized rectenna for wireless power transmission and data communication,” IEEE Antennas and Wireless Propag. Letter, vol. 4, pp. 205–208, 2005
[16] Tzong-Chee Yo, Chien-Ming Lee, Chen-Ming Hsu, Ching-Hsing Luo, “Compact Circularly Polarized Rectenna With Unbalanced Circular Slots,” IEEE Trans. Antennas and Propag, vol. 56, no. 3, pp.882–886, March 2008
[17] Tzong Chee Yo, Chien-Ming Lee, Ching Hsing Luo, Chih-Ho Tu, Ying-Zong Juang, “Stacked Implantable rectenna for wireless powering the medical implants,” in Proc. IEEE Antennas and propag. Society Int. Symp., pp.3189–3192, Jun. 2007
[18] R. D. Beach, F. v. Kuster, F. Moussy, “Subminiature implantable potentiostat and modified commercial telemetry device for remote glucose monitoring,” IEEE Trans. Instrum. Meas., vol. 48, no. 6, pp. 1239–1245, Dec. 1999.
[19] W. G. Scanlon, N. E. Evans, Z. M. McCreesh, “RF performance of a 418 MHz radio telemeter packaged for human vaginal placement,” IEEE Trans. Biomed. Eng., vol. 44, no. 5, pp. 427–430, May 1997.
[20] W. G. Scanlon, N. E. Evans, J. B. Burns, “FDTD analysis of closecoupled 418 MHz radiating devices for human biotelemetry,” Phys. Med. Biol., vol. 44, no. 2, pp. 335–345, Feb. 1999.
[21] G. C. Crumley, N. E. Evans, J. B. Burns, T. G. Trouton, “On the design and assessment of a 2.45 GHz radio telecommand system for remote patient monitoring,” Med. Eng. Phys., vol. 20, no. 10, pp. 750–755, Mar. 1999.
[22] Maysam Ghovanloo, Suresh Atluri,” A Wide-Band Power-Efficient Inductive Wireless Link for Implantable Microelectronic Devices Using Multiple Carriers.” IEEE trans. on circuits and systems, vol.54, pp.2211-2221, Oct 2007
[23] Zhi Yang, Wentai Liu, Eric Basham, “Inductor Modeling in Wireless Links for Implantable Electronics.” IEEE Transactions on Magnetics, Volume 43, pp,3851-3860, Oct. 2007,
[24] G. A. Kendir, Wentai Liu, Guoxing Wang, M. Sivaprakasam, R. Bashirullah, Mark S. Humayun, and James D. Weiland, “An optimal design methodology for inductive power link with class-E amplifier.” IEEE trans. on circuits and systems, Vol.52, pp. 857-866, May 2005
[25] M. Clements, K. Vichienchom, Wentai Liu; C. Hughes, E. McGucken, C. DeMarco, J. Mueller, M. Humayun, E. D. Juan, J. Weiland, R. Greenberg, “An implantable power and data receiver and neuro-stimulus chip for a retinal prosthesis system.” IEEE International Symposium on Circuits and Systems, Volume 1, pp.194 – 197, June 1999
[26] G.A. Kendir, Wentai Liu, R. Bashirullah, Guoxing Wang, M. Humayun, J. Weiland, “An efficient inductive power link design for retinal prosthesis.” IEEE International Symposium on Circuits and Systems, Volume 4, pp. 4 – 41, May 2004
[27] R. N. Simons, F. A. Miranda, J. D. Wilson3, R. E. Simons, “Wearable Wireless Telemetry System for Implantable Bio-MEMS Sensors,” IEEE EMBS Annual International Conference, pp.6245 – 6248, Aug. 2006
[28] J. A. Nessel, R. N. Simons, F. A. Miranda, ”Near Field Radiation Characteristics of Implantable Square Spiral Chip Inductor Antennas for Bio-Sensors,” IEEE Antennas and Propagation International Symposium, pp.3197 – 3200, June 2007
[29] R. N. Simons, D. G. Hall, F. A. Miranda, ”RF Telemetry System for an Implantable Bio-MEMS Sensor,” IEEE MTT-S International Microwave Symposium Digest, Vol.3, pp.1433 – 1436, June 2004
[30] R. N. Simons, F. A. Miranda, ” Modeling of the Near Field Coupling Between an External Loop and an Implantable Spiral Chip Antenna in Biosensor Systems.” IEEE Antennas and Propagation International Symposium, pp.1099 – 1102, July 2006
[31] R. N. Simons, D. G. Hall, F. A. Miranda, ”Spiral Chip Implantable Radiator and Printed Loop External Receptor for RF Telemetry in Bio-Sensor Systems,” IEEE, Radio and Wireless Conference, pp. 203 – 206, Sept. 2004
[32] A. Shameli, A. Safarian, A. Rofougaran, M. Rofougaran, F. D. Flaviis, ” An RFID System with Fully Integrated Transponder,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 285 – 288, June 2007
[33] Chih-Chun Tang, Chia-Hsin Wu, and Shen-Iuan Liu, ” Miniature 3-D Inductors in Standard CMOS Process.” IEEE Journal of solid-state circuits, Vol. 37, pp. 471 – 480, April 2002
[34] Wei-Zen Chen, Kuo-Ching Hsu, “Miniaturized 3-Dimensional Transformer Design.” IEEE 2005 Custom Integrated circuited conference, pp. 285 – 288, Sept. 2005
[35] Wei-Zen Chen, Wen-Hui Chen, “Symmetric 3D Passive Components for RF ICs Application,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 599 – 602, June 2003
[36] Chia-Hsin Wu, Chih-Chun Tang, Shen-Iuan Liu, “Analysis of On-Chip Spiral Inductors Using the Distributed Capacitance Model.” IEEE Journal of solid-state circuits, Vol. 38, pp. 1040 – 1044, June 2003