簡易檢索 / 詳目顯示

研究生: 鄭志羿
Zheng, Zhi-Yi
論文名稱: 微夾持器力量控制之發展
Development of force control for micro gripper
指導教授: 張仁宗
Chang, Ren-Jung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 94
中文關鍵詞: 微力量感測器微夾持器黏著力
外文關鍵詞: micro-force-sensor, adhesion force, micro-gripper
相關次數: 點閱:69下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以「光機電系統控制研究室」研究多年的微夾持系統為基礎,發展微夾持系統力量控制的功能,文中先對於微操控環境進行分析,將環境對於微夾持任務的影響作評估,並且利用設計之微力量感測器進行簡單的黏著力實驗,測量出直徑63、37μm玻璃微粒子對PU(polyurethane)材料的黏著力大小,以利日後微夾持任務的夾持力估測及控制。另一方面,設計具力量感測器的微夾持器,並利用CCD擷取微夾持器夾持直徑20μm銅線的情形,進行非線上的夾持力估測,期望能達到力量控制的初步發展。

    This thesis is based on the research of micro-gripping system by “OME System Lab” in recent years for developing the function of force control in micro-gripping system. At first micro-manipulator environment in the thesis is analyzed. The effect of micro-gripping task by environment is evaluated. The designed micro-force sensor is used to do the simple experiment with adhesion forces. The adhesion forces between glass particles, with diameter 63, 37μm respectively, and PU(polyurethane) plate are measured, to facilitate estimation and control of gripping force in micro-gripping task in the future. On the other hand, designing micro gripper with force sensor and using CCD, the micro gripper can grip a copper wire with diameter 20μm and proceed to estimate the gripping force off-line, which is expected to achieve the initial development of force control.

    中文摘要                  I 英文摘要                  II 致謝                    III 表目錄                   VIII 圖目錄                   IX 符號表                   XIV 第一章 緒論                1 1-1 引言                 1 1-2 文獻回顧               2 1-2-1 微米尺度環境黏著力分析       2 1-2-2 微力量感測器            5 1-2-3 視覺為基礎的力量感測器       7 1-3 研究目標               11 1-4 研究方法               11 1-5 本文架構               12 第二章 微操控環境黏著力分析        14 2-1 黏著力的組成             14 2-1-1 黏著力簡介             14 2-1-2 凡德瓦爾力             15 2-1-3 毛細管力              16 2-1-4 靜電力               17 2-2 黏著力分析              18 2-2-1 以物件間距為變數的黏著力數學模型  18 2-2-2 黏著力模擬             19 2-2-3 尺度效應              22 2-3 構成黏著力的原因           23 第三章 微力量感測器之設計與製造      25 3-1 微力量感測器的設計          25 3-1-1 微力量感測器的要求         28 3-1-2 高分子材料的特性          28 3-1-3 微力量感測器設計分析        31 3-2 微力量感測器的製造          36 3-2-1 準分子雷射微細加工         36 3-2-2 微力量感測器的加工結果       38 3-2-3 微力量感測器建模分析        39 3-3 微力量感測器的實驗分析        41 3-3-1 實驗系統架構            41 3-3-2 力矩與撓角的關係          42 第四章 微力量感測器運用於黏著力的測量   50 4-1 實驗目標及設備            50 4-1-1 實驗目標              50 4-1-2 系統架構              50 4-2 實驗設計               52 4-2-1 實驗材料              52 4-2-2 實驗環境              52 4-2-3 實驗流程              52 4-2-4 索貝爾邊緣偵測           56 4-3 實驗結果               57 4-3-1 實驗條件              57 4-3-2 黏著力量測             58 第五章 微夾持器之設計與製造        61 5-1 微夾持器之設計與分析         61 5-1-1 微夾持器之設計           61 5-1-2 有限元素分析            63 5-2 微夾持系統製作            71 5-2-1 微夾持器加工方法          71 5-2-2 微致動器之製作           72 5-2-3 微夾持器與致動器之組裝       73 5-3 夾持力測試              74 5-3-1 夾持力實驗設計           74 5-3-2 靜摩擦係數量測           76 5-3-3 夾持力實驗             77 第六章 結論與未來展望           85 6-1 結論                 85 6-2 未來展望               86 參考文獻                  87 附錄                    90 自述                    94

    [1] W. F. Heinz and J. H. Hoh, “Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope,” Trends Biotechnol, 17:143-150, 1999.
    [2] M. Sitti and H. Hashimoto, “Teleoperated Touch Feedback from the Surfaces at the Nanoscale: Modeling and Experiments,” IEEE/ASME Transactions on Mechatronics, vol. 8, no. 1, March 2003.
    [3] A. Menciasssi, A. Eisinberg, I. Izzo and P. Dario, “From “Macro“ to “Micro“ Manipulation: Models and Experiments,“ IEEE/ASME Transactions on Mechatronics, vol. 9, no. 2, June 2004.
    [4] X. Shi and Y. P. Zhao, “Comparison of various adhesion contact theories and the influence of dimensionless load parameter,” J. Adhesion Sci. Technol., vol. 18, no. 1, pp. 55-68, 2004.
    [5] M. Tanimoto, F. Arai, T. Fukuda, H. Iwata, K. Itoigawa, Y. Gotoh, M. Hashimoto and M. Negoro, “Micro force sensor for intravascular neurosurgery and in vivo experiment,” IEEE, 1998.
    [6] B. L. Gray and R. S. Fearing, “A surface micromachined microtactile sensor array,” IEEE, April 1996.
    [7] M. ITO, E. Yamamoto, S. Hashimoto, I. Komazaki, H. Miyajima, S. Shinohara and K. Yanagisawa, “Compound-cavity tactile sensor using surface-emitting laser,” IEEE, 1995.
    [8] X. Wang, G. K. Ananthasuresh and J. P. Ostrowski, “Vision-based sensing of forces in elastic objects,” Sensors and Actuators A 94, pp. 142-156, 2001.
    [9] M. Kaneko, N. Kanayama and T. Tsuji, “Vision-based active sensor using a flexible beam,” IEEE/ASME Transactions on Mechatronics, vol. 6, no.1, March 2001.
    [10] M. A. Greminger and B. J. Nelson, “Modeling Elastic Objects with Neural Networks for Vision-Based Force Measurement,” Proceedings of the 2003 IEEE/RSJ, October 2003.
    [11] C. W. Kennedy and J. P. Desai, ”Force feedback using vision,“ International Conference on Advanced Robotics, pp. 179-184, Coimbra, Portugal, 2003.
    [12] M. A. Greminger and B. J. Nelson, “Vision-based force measurement,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 3, March 2004.
    [13] M. Sitti and H. Hashimoto, “Controlled Pushing of Nanoparticles: Modeling and Experiments,” IEEE/ASME Transactions on Mechatronics, vol. 5, no. 2, June 2000.
    [14] J. Crassous, E. Charlaix, H. Gayvallet and J. L. Loubet, “Experimental Study of a Nanometric Liquid Bridge with a Surface Force Apparatus,” Langmuir, vol. 9, no. 8, pp. 1995-1998, 1993.
    [15] N. P. Suh, The Principles of Design, Oxford University Press, New York, 1990.
    [16] 施博偉,「形狀記憶合金驅動微夾持器之應用」,國立成功大學機械工程學系碩士論文,中華民國九十四年六月。
    [17] 馮瑨,「微型撓性機械材料特性量測研究」,國立成功大學機械系大專生參與專題研究計畫研究成果報告,中華民國八十九年二月。
    [18] 馮瑨,「微作業端效器之設計製造與測試」,國立成功大學機械工程學系碩士論文,中華民國八十九年六月。
    [19] 金日光,華又卿,高分子物理,化學工業出版社,1993。
    [20] 王永聯,「平面微型撓性機械之分析設計與製造」,國立成功大學機械工程學系博士論文,中華民國八十八年。
    [21] J. M. Paros, “How to design flexure hinges,” Machine design, vol.36, pp151-156, 1965.
    [22] 机啟成,「形狀記憶合金驅動生醫用高分子微夾持系統之發展」,國立成功大學機械工程學系碩士論文,中華民國九十三年七月。

    下載圖示 校內:2007-07-25公開
    校外:2008-07-25公開
    QR CODE