簡易檢索 / 詳目顯示

研究生: 彭睿勳
Peng, Jui-Hsun
論文名稱: 大型隨意網路之分佈式傳輸排程與功率控制研究
Distributed Scheduling and Power Control in Large-Scale Ad Hoc Networks
指導教授: 劉俊宏
Liu, Chun-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 54
中文關鍵詞: 機會傳輸排程離散功率控制隨意網路傳輸容量
外文關鍵詞: Discrete power control, Distributed opportunistic scheduling, Ad hoc network, Transmission capacity
相關次數: 點閱:83下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們介紹兩個方法-距離感知傳輸排程和兩層離散功率控制,它們可以增加大規模無線隨意網路的傳輸容量。傳輸容量是無線隨意網路的區域頻譜效益指標,它受限於中斷約束。研究這兩種方法的動機是觀察是否限制多用戶的干擾可以有效提高無線隨意網路的網路容量。首先我們提出一個機會傳輸排程方案,此方案是利用傳送者到預定接收者之間的距離感知條件,我們稱之為距離感知傳輸排程方案。當傳送者的傳輸距離滿足以傳送者密度為考量的動態門檻約束時,此時排定傳送者允許傳送。再來我們提出關於距離感知傳輸排程下的兩層離散功率控制,這是因為兩層離散功率控制如果滿足某一個特定條件下它是可以減少干擾。我們從平均訊號干擾比方面來說,使用兩層離散功率控制方案推導出的功率比來做功率控制,它能夠優於使用常數功率控制的方案,在此常數功率控制表示使用相同功率。這篇論文提出的兩種方案本質上都是根據傳輸距離的特性,而且利用減少干擾可以達到較高的區域頻譜效益。

    In this thesis, we introduce two distinct approaches – distance-aware scheduling and 2-layer discrete power control (DPC), which are able to enhance the transmission capacity of a large-scale wireless ad hoc network. Transmission capacity is an area spectrum efficiency metric of a wireless ad hoc network with an outage constraint. The motivation of studying these two approaches is to investigate whether limiting multiuser interference is an effective means of boosting the network capacity of a wireless ad hoc network. First, we propose an opportunistic scheduling scheme that exploits distance-aware conditions between a transmitter and its intended receiver, termed distance-aware scheduling (DAS) scheme. A transmitter with DAS schedules a transmission when the distance satisfies an density-based dynamic threshold constraint. Next, we propose the 2-layer DPC scheme for DAS since such 2-layer DPC can reduce interference if it is properly designed to satisfy a certain condition. The power control scaling law for the 2-layer DPC scheme is developed, which is able to strictly outperform the constant power control scheme (i.e., no power control scheme) in terms of the average signal-to-interference ratio. Both of the proposed schemes are essentially characterized by transmission distance and can achieve higher area spectrum efficiency due to interference reduction.

    摘要 v Abstract vii Acknowledgements ix Table of Contents xi List of Figures xiii Abbreviations xv Symbols xvii 1 Introduction 1 1.1 Research Background and Motivation . . . . . . . . . . . . . . . . . . . . . 1 1.2 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Distance-Aware Scheduling without Power Control 7 2.1 Poisson-distributed Network Model and Preliminaries . . . . . . . . . . . . . 8 2.2 Distance-Aware Scheduling with a Constant Threshold . . . . . . . . . . . . 11 2.2.1 Why Distance-Aware Scheduling? . . . . . . . . . . . . . . . . . . . 13 2.2.2 Transmission Capacity achieved by Distance-Aware Scheduling with a Constant Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Distance-Aware Scheduling with a Dynamic Threshold . . . . . . . . . . . . 21 2.3.1 Transmission capacity of distance-aware scheduling with a dynamic threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.2 How to design threshold ? . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Numerical Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . 25 3 Distance-Aware Scheduling with Discrete Power Control 29 3.1 Poisson-distributed Network Model and Preliminaries . . . . . . . . . . . . . 30 3.2 Why Discrete Power Control? . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.1 How to design the discrete power value Pi? . . . . . . . . . . . . . . 36 3.3 Distance-Aware Scheduling with 2-Layer Discrete Power Control . . . . . . 38 3.4 Discussion and Numerical Results . . . . . . . . . . . . . . . . . . . . . . . 43 4 Conclusion and Future Work 47 4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Reference 51

    [1] A. J. Goldmith and P. P. Varaiya, “Capacity of fading channels with channel side information,”IEEE Trans. Inf. Theory, vol. 43, no. 11, pp. 1986–1992, Nov. 1997.
    [2] R. Knopp and P. A. Humblet, “Information capacity and power control in single cell multiuser communications,” in Proc. IEEE ICC, Seattle, WA, June 1995, pp. 331–335.
    [3] L. Li and A. J. Goldsmith, “Capacity and optimal resource allocation for fading broadcast channels-Part I: Ergodic capacity,” IEEE Trans. Inf. Theory, vol. 47, no. 3, pp.1083–1102, Mar. 2001.
    [4] P. Viswanath, D. Tse, and R. Laroia, “Opportunistic beamforming using dumb antennas,”IEEE Trans. Inform. Theory, vol. 48, no. 6, pp. 1277–1294, 2002.
    [5] X. Liu, E. K. Chong, and N. B. Shroff, “A framework for opportunistic scheduling in wireless networks,” Computer Networks, vol. 41, no. 4, pp. 451–474, Mar. 2003.
    [6] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, P. Whiting, and R. Vijayakumar,“Providing quality of service over a shared wireless link,” IEEE Commun. Mag., vol. 39, no. 2, pp. 150–154, Feb. 2001.
    [7] M. J. Neely, “Super-fast delay tradeoffs for utility optimal fair scheduling in wireless networks,” IEEE J. Sel. Areas Commun., vol. 24, no. 8, pp. 1489–1501, Aug. 2006.
    [8] S. Borst, “User-level performance of channel-aware scheduling algorithms in wireless data networks,” IEEE/ACM Trans. Netw., vol. 13, no. 3, pp. 636–647, Jun. 2005.
    [9] S. Agarwal, R. H. Katz, S. V. Krishnamurthy, and S. K. Dao, “Distributed power control in ad-hoc wireless networks,” in Proc. IEEE Personal, Indoor and Mobile Radio Communications (PIMRC’01), Sept. 2001.
    [10] T. ElBatt and A. Ephremides, “Joint scheduling and power control for wireless ad hoc networks,” IEEE Trans. Wireless Commun., vol. 3, no. 1, pp. 74–85, Jan. 2004.
    [11] C. W. Sung and K.-K. Leung, “A generalized framework for distributed power control in wireless networks,” IEEE Trans. Inform. Theory, vol. 51, no. 7, pp. 2625–2635, July
    2005.
    [12] V. Kawadia and P. R. Kumar, “Principles and protocols for power control in wireless ad hoc networks,” IEEE J. Select. Areas Commun., vol. 23, no. 1, pp. 76–88, Jan. 2005.
    [13] M. Andersin, Z. Rosberg, and J. Zander, “Distributed discrete power control in cellular PCS,” Wireless Personal Communications, no. 6, pp. 211–231, 1998.
    [14] S.-L. Kim, Z. Rosberg, and J. Zander, “Combined power control and transmission rate selection in cellular networks,” in Proc. IEEE Vehicular Technology Conference (IEEE VTC’99), Sept. 1999, pp. 1653–1657.
    [15] S. P. Weber, X. Yang, J. G. Andrews, and G.de Veciana, “Transmission capacity of wireless ad hoc networks with outage constraints,” IEEE Trans. Inform. Theory, vol. 51, no. 12, pp. 4091-4102, Dec. 2005.
    [16] F. Baccelli, B. Blaszczyszyn, and P. Muhlethaler, “An Aloha protocol for multihop mobile wireless networks,” IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 421–436, Feb. 2006.
    [17] H. Wu, D. Li, and C. Yin, “Transmission capacities for Overlaid Spread-spectrum Wireless Networks with Rayleigh Channel,” in Proceedings of IC-NIDC2009, Beijing, China, Dec.2009.
    [18] S. Weber, J. G. Andrews, and N. Jindal, “The effect of fading, channel inversion, and threshold scheduling in ad hoc networks,”IEEE Trans. Inform. Theory, vol. 53, no. 11,
    pp. 4127-4149, Nov. 2007.
    [19] F. Baccelli, B. Blaszczyszyn, and P. Muhlethaler, “Stochastic analysis of spatial and opportunistic Aloha,” IEEE J. Sel. Areas Commun., vol. 27, no. 7, pp. 1105–1119, Sep.2009.
    [20] S. Weber, J. G. Andrews, and N. Jindal, “An overview of the transmission capacity of wireless networks,” IEEE Trans. Commun., vol. 58, no. 12, pp. 3593–3604, Dec. 2010.
    [21] S. Weber, J. Andrews, X. Yang, and G. de Veciana, “Transmission capacity of wireless ad hoc networks with successive interference cancellation,” IEEE Trans. Inf. Theory, vol. 53, no. 8, pp. 2799-2814, Aug. 2007.
    [22] C.-H. Liu and Y.-C. Tsai,“Distributed Dynamic Scheduling in Wireless Ad Hoc Networks with Spatial Randomness”, IEEE Globecom, Dec. 2013.
    [23] C.-H. Liu, ”Distributed Interfer-Channel Aware Scheduling in Large-ScaleWireless Ad Hoc Networks”, IEEE Globecom, Dec. 2013.
    [24] C.-H. Liu, B. Rong and S. Cui, ”Optimal Discrete Power Control in Poisson-Clustered Ad Hoc Networks”, to appear in IEEE Trans. on Wireless Communications, 2014.
    [25] N. Jindal, S. P. Weber, and J. G. Andrews, “Fractional power control for decentralized wireless networks,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 5482–5492, Dec. 2008.
    [26] Kingman J F C, Poisson Processes, Oxford University Press,1933, 102-165.
    [27] F. Baccelli and B. Błaszczyszyn, Stochastic Geometry and Wireless Networks (Vol. I : Theory). Now Publishers: Foundations and Trends in Networking, 2010.
    [28] S. Biswas and R. Morris, “Opportunistic routing in multi-hop wireless networks,” in ACM SIGCOMM, Aug. 2005, pp. 133–144.
    [29] C. Westphal, “Opportunistic routing in dynamic ad hoc networks: The OPRAH protocol,”in Proc. IEEE MASS, Oct. 2006, pp. 570–573.
    [30] M. Felegyhazi and J.-P. Hubaux, Game Theory inWireless Networks: A Tutorial. EPFL Laboratory for Computer Communications and Applications, Lausanne, Switzerland,
    Tech. Rep. LCA-REPORT-2006-002, 2006.
    [31] E. S. Sousa, “Interference modeling in a direct-sequence spreadspectrum packet radio network,” IEEE Trans. Commun., vol. 38, no. 9, pp. 1475–1482, Sept. 1990.
    [32] S. B. Lowen and M. C. Teich, “Power-law shot noise,” IEEE Trans. Inform. Theory,vol. 36, no. 6, pp. 1302–1318, Sept. 1990.
    [33] J. Ilow and D. Hatzinakos, “Analytic alpha-stable noise modeling in a poisson field of interferers or scatterers,” IEEE Trans. Signal Processing, vol. 46, no. 6, pp. 1601–1611,June 1998.
    [34] D. Stoyan, W. Kendall, and J. Mecke, Stochastic Geometry and Its Applications, 2nd edition. John Wiley and Sons, Inc., 1996.
    [35] C.-H. Liu and J. G. Andrews, “Ergodic transmission capacity of wireless ad hoc networks with Interference management,” IEEE Trans. Wireless Commun., vol. 11, no. 6,
    June. 2012.

    下載圖示 校內:2017-07-10公開
    校外:2019-07-10公開
    QR CODE