| 研究生: |
賴柏丞 Lai, Po-Cheng |
|---|---|
| 論文名稱: |
以纖維素奈米晶體為基底製備可直接書寫式列印之離子凝膠及其於穿戴式感測器之應用 Direct ink writing of ionic gels based on cellulose nanocrystals for wearable sensor |
| 指導教授: |
游聲盛
Yu, Sheng-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 3D 列印 、水凝膠 、纖維素奈米結晶 、深共熔溶劑 、離子凝膠 、穿戴式感測器 |
| 外文關鍵詞: | 3D printing, nanocomposite hydrogels, cellulose nanocrystals, stretchable electronics, deep eutectic solvents, nanocomposite ionogels, wearable sensors |
| 相關次數: | 點閱:149 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來由離子凝膠材料已被陸續應用於可穿戴式電子裝備及人造肌肉的領域,離子凝膠通常由可自由移動的離子及聚合物網絡所構成,並具備良好的離子導電性。上述應用通常要求凝膠堅韌、透明且可3D列印。另一方面,永續性材料的利用,也是現今研究循環經濟的主要課題。在眾多生物質材料中,纖維素奈米結晶 (Cellulose nanocrystals, CNCs)具備特殊的機械性質及流變性質,且由於其表面帶有許多羥基,可進行多種表面修飾。本研究分別以不同的概念設計了兩款具備不同性質的直接書寫式3D列印 (Direct ink writing)墨水,並將其應用於穿戴式人體感測器。
首先,我們設計了一種結合陽離子型纖維素奈米晶體 (Cationic cellulose nanocrystals)及兩性離子單體的水凝膠墨水。CCNCs首先被分散在單體的水溶液中,以製備具有動態物理網絡的墨水,利用UV光聚合及額外引入鋁離子的方式製備了含有多重物理交聯的水凝膠材料。與使用傳統 CNCs 的水凝膠相比,CCNCs在水中能與聚合物網絡形成更有效的鍵結,能夠顯著改變水凝膠之流變及機械性質,並降低3D列印所需的奈米材料用量。
另外,由於水凝膠材料經常受到水分蒸發的影響,我們以深共熔溶劑 (Deep eutectic solvent, DES)及CNCs製備出新型離子凝膠,並用於直接書寫式3D列印及可自癒合之穿戴式感測器。我們發現可透過簡單的加熱製程誘導CNCs在低濃度下,形成可3D列印之凝膠墨水。我們選擇丙烯酸(Acrylic acid, AA)和丙烯醯胺(Acrylamide, AAm)構建強韌的聚合物網絡。並進一步引入鋁離子與聚丙烯酸單元產生進一步物理交聯。此CNCs/DES離子凝膠具備高韌性及可拉伸性,且由於高分子網絡與DES間有充足的動態物理鍵結,如氫鍵作用力及離子鍵結,此離子凝膠能夠在發生斷裂時自我修復,展現材料的自癒合性質。
在這兩項策略中,我們分別改變了CNCs的表面化學和CNCs於DES中的分散製程,成功減少了水凝膠和離子凝膠中的奈米粒子用量,以實現更高的透明度及良好的自修復性質。以CCNCs為基底的水凝膠和以 CNCs/DES為基底的離子凝膠可分別組裝為電容型感測器及電阻型感測器。3D 列印使得我們能進一步製備具特殊設計的感測器,並提高其靈敏度。透過改變納米晶體的表面化學及改善分散製程,我們的奈米複合水凝膠和離子凝膠展現了多功能性,包括良好的機械強度、高透明度、自修復能力和可3D列印性
Ionogels are soft materials that have been applied in wearable electronic and artificial muscles. These applications often require the ionogels to be tough, transparent, and 3D printable. Renewable materials like cellulose nanocrystals (CNCs) with tunable surface chemistry provide a way to prepare tough nanocomposite ionogels. Here, we designed ink for 3D printable sensors with two different concepts.
First, we design an ink with cationic cellulose nanocrystals (CCNCs) and zwitterionic hydrogels. CCNCs were first dispersed in an aqueous solution of monomers to prepare the ink with a reversible physical network. Subsequent photopolymerization and the introduction of Al3+ ion led to strong hydrogels with multiple physical cross-links. Compared to the hydrogels using conventional CNCs, CCNCs formed a stronger physical network in water that greatly reduced the concentration of nanocrystals needed for reinforcing and 3D printing.
Second, we utilized deep eutectic solvents (DES) as alternative solvents to prepare 3D printable and self-healable ionogels with low volatility and overcome low stability of common hydrogels due to the evaporation of water. By simply heating the dispersion of CNCs/DES, the gelation of CNCs could be effectively induced. Acrylic acid (AA) and acrylamide (AAm) were chosen to construct a single network copolymer system under photopolymerization. The introduction of Al3+ ions provided additional physically cross-linking. With abundant dynamic physical bonds such as hydrogen bonding and ionic interactions between the polymer chains and DES, the ionogels could self-heal after a fracture.
In short, we presented two strategies to reduce the content of nanoparticles in hydrogels and ionogels to achieve high transparency and simple dispersion. CCNCs based hydrogels and CNCs/DES based ionogels were assembled as capacitive sensor and resistive sensor, respectively. 3D printing further enabled a facile design of tactile and special pattern sensors with enhanced sensitivity. By harnessing the surface chemistry of the nanocrystals, our nanocomposite hydrogels and ionogels achieved multifunctionality containing good mechanical strength, high transparency, self-healing ability, and 3D printability.
1. Hong, W.; Zhao, X.; Zhou, J.; Suo, Z., A theory of coupled diffusion and large deformation in polymeric gels. J. Mech. Phys. Solids 2008, 56 (5), 1779-1793.
2. Li, J.; Mooney, D. J., Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1 (12), 1-17.
3. Ahmed, E. M., Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 2015, 6 (2), 105-121.
4. Huang, J.; Liu, F.; Su, H.; Xiong, J.; Yang, L.; Xia, J.; Liang, Y., Advanced nanocomposite hydrogels for cartilage tissue engineering. Gels 2022, 8 (2), 138.
5. Zhao, Y.; Song, S.; Ren, X.; Zhang, J.; Lin, Q.; Zhao, Y., Supramolecular adhesive hydrogels for tissue engineering applications. Chem. Rev. 2022.
6. Hoare, T. R.; Kohane, D. S., Hydrogels in drug delivery: Progress and challenges. Polymer 2008, 49 (8), 1993-2007.
7. Lee, K. Y.; Mooney, D. J., Hydrogels for tissue engineering. Chem. Rev. 2001, 101 (7), 1869-1880.
8. Tavakoli, J.; Tang, Y., Hydrogel based sensors for biomedical applications: An updated review. Polymers 2017, 9 (8), 364.
9. Lim, H. R.; Kim, H. S.; Qazi, R.; Kwon, Y. T.; Jeong, J. W.; Yeo, W. H., Advanced soft naterials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 2020, 32 (15), e1901924.
10. Su, G.; Yin, S.; Guo, Y.; Zhao, F.; Guo, Q.; Zhang, X.; Zhou, T.; Yu, G., Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications. Mater. Horiz. 2021, 8 (6), 1795-1804.
11. Yang, B.; Yuan, W., Highly stretchable, adhesive, and mechanical zwitterionic nanocomposite hydrogel biomimetic skin. ACS Appl. Mater. Interfaces 2019, 11 (43), 40620-40628.
12. Calvert, P., Hydrogels for Soft Machines. Adv. Mater. 2009, 21 (7), 743-756.
13. Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R., Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 2006, 18 (11), 1345-1360.
14. Simionescu, B. C.; Ivanov, D., Natural and synthetic polymers for designing composite materials. In Handbook of bioceramics and biocomposites, Springer: 2016; pp 233-286.
15. Chen, Q.; Yan, X.; Zhu, L.; Chen, H.; Jiang, B.; Wei, D.; Huang, L.; Yang, J.; Liu, B.; Zheng, J., Improvement of mechanical strength and fatigue resistance of double network hydrogels by ionic coordination interactions. Chem. Mater. 2016, 28 (16), 5710-5720.
16. Gong, J. P., Why are double network hydrogels so tough? Soft Matter 2010, 6 (12), 2583-2590.
17. Chen, Q.; Wei, D.; Chen, H.; Zhu, L.; Jiao, C.; Liu, G.; Huang, L.; Yang, J.; Wang, L.; Zheng, J., Simultaneous enhancement of stiffness and toughness in hybrid double-network hydrogels via the first, physically linked network. Macromolecules 2015, 48 (21), 8003-8010.
18. Yang, B.; Yuan, W., Highly stretchable and transparent double-network hydrogel ionic conductors as flexible thermal-mechanical dual sensors and electroluminescent devices. ACS Appl. Mater. Interfaces 2019, 11 (18), 16765-16775.
19. Sun, T. L.; Kurokawa, T.; Kuroda, S.; Ihsan, A. B.; Akasaki, T.; Sato, K.; Haque, M. A.; Nakajima, T.; Gong, J. P., Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 2013, 12 (10), 932-937.
20. Gao, G.; Du, G.; Sun, Y.; Fu, J., Self-healable, tough, and ultrastretchable nanocomposite hydrogels based on reversible polyacrylamide/montmorillonite adsorption. ACS Appl. Mater. Interfaces 2015, 7 (8), 5029-5037.
21. Odent, J.; Wallin, T. J.; Pan, W.; Kruemplestaedter, K.; Shepherd, R. F.; Giannelis, E. P., Highly elastic, transparent, and conductive 3D‐printed ionic composite hydrogels. Adv. Funct. Mater. 2017, 27 (33), 1701807.
22. Zhai, X.; Ma, Y.; Hou, C.; Gao, F.; Zhang, Y.; Ruan, C.; Pan, H.; Lu, W. W.; Liu, W., 3D-printed high strength bioactive supramolecular polymer/clay nanocomposite hydrogel scaffold for bone regeneration. ACS Biomater. Sci. Eng. 2017, 3 (6), 1109-1118.
23. Xia, S.; Zhang, Q.; Song, S.; Duan, L.; Gao, G., Bioinspired dynamic cross-linking hydrogel sensors with skin-like strain and pressure sensing behaviors. Chem. Mater. 2019, 31 (22), 9522-9531.
24. Lei, Z.; Wu, P., A supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities. Nat. Commun. 2018, 9 (1), 1-7.
25. Ionov, L., Hydrogel-based actuators: Possibilities and limitations. Mater. Today 2014, 17 (10), 494-503.
26. Lee, B. P.; Konst, S., Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry. Adv. Mater. 2014, 26 (21), 3415-3419.
27. Tan, Y. J.; Wu, J.; Li, H.; Tee, B. C. K., Self-healing electronic materials for a smart and sustainable future. ACS Appl. Mater. Interfaces 2018, 10 (18), 15331-15345.
28. Lin, S.; Yuk, H.; Zhang, T.; Parada, G. A.; Koo, H.; Yu, C.; Zhao, X., Stretchable hydrogel electronics and devices. Adv. Mater. 2016, 28 (22), 4497-4505.
29. Someya, T.; Bao, Z.; Malliaras, G. G., The rise of plastic bioelectronics. Nature 2016, 540 (7633), 379-385.
30. Lei, Z.; Wang, Q.; Sun, S.; Zhu, W.; Wu, P., A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 2017, 29 (22), 1700321.
31. Zhang, W.; Wu, B.; Sun, S.; Wu, P., Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nat. Commun. 2021, 12 (1), 4082.
32. Shahrubudin, N.; Lee, T. C.; Ramlan, R., An overview on 3D printing technology: Technological, materials, and applications. Procedia Manuf. 2019, 35, 1286-1296.
33. Lee, J.-Y.; An, J.; Chua, C. K., Fundamentals and applications of 3D printing for novel materials. Appl. Mater. Today 2017, 7, 120-133.
34. Mohamed, O. A.; Masood, S. H.; Bhowmik, J. L., Optimization of fused deposition modeling process parameters: A review of current research and future prospects. Adv. Manuf. 2015, 3 (1), 42-53.
35. Gebhardt, A., Understanding additive manufacturing. 2011.
36. Zakeri, S.; Vippola, M.; Levänen, E., A comprehensive review of the photopolymerization of ceramic resins used in stereolithography. Addit. Manuf. 2020, 35, 101177.
37. Bae, S.-U.; Kim, B.-J., Effects of cellulose nanocrystal and inorganic nanofillers on the morphological and mechanical properties of digital light processing (DLP) 3D-printed photopolymer composites. Appl. Sci. 2021, 11 (15), 6835.
38. Zheng, X.; Lee, H.; Weisgraber, T. H.; Shusteff, M.; DeOtte, J.; Duoss, E. B.; Kuntz, J. D.; Biener, M. M.; Ge, Q.; Jackson, J. A., Ultralight, ultrastiff mechanical metamaterials. Science 2014, 344 (6190), 1373-1377.
39. Zheng, X.; Smith, W.; Jackson, J.; Moran, B.; Cui, H.; Chen, D.; Ye, J.; Fang, N.; Rodriguez, N.; Weisgraber, T., Multiscale metallic metamaterials. Nat. Mater. 2016, 15 (10), 1100-1106.
40. MacCurdy, R.; Katzschmann, R.; Kim, Y.; Rus, D., Printable hydraulics: A method for fabricating robots by 3D co-printing solids and liquids. 2016 IEEE ICRA 2016, 3878-3885.
41. Peele, B. N.; Wallin, T. J.; Zhao, H.; Shepherd, R. F., 3D printing antagonistic systems of artificial muscle using projection stereolithography. Bioinspir. Biomim. 2015, 10 (5), 055003.
42. Pouya, C.; Overvelde, J. T.; Kolle, M.; Aizenberg, J.; Bertoldi, K.; Weaver, J. C.; Vukusic, P., Characterization of a mechanically tunable gyroid photonic crystal inspired by the butterfly parides sesostris. Adv. Opt. Mater. 2016, 4 (1), 99-105.
43. Farahani, R. D.; Dubé, M.; Therriault, D., Three‐dimensional printing of multifunctional nanocomposites: Manufacturing techniques and applications. Adv. Mater. 2016, 28 (28), 5794-5821.
44. Wan, X.; Luo, L.; Liu, Y.; Leng, J., Direct ink writing based 4D printing of materials and their applications. Adv. Sci. 2020, 7 (16), 2001000.
45. Lebel, L. L.; Aissa, B.; Khakani, M. A. E.; Therriault, D., Ultraviolet‐assisted direct‐write fabrication of carbon nanotube/polymer nanocomposite microcoils. Adv. Mater. 2010, 22 (5), 592-596.
46. Muth, J. T.; Dixon, P. G.; Woish, L.; Gibson, L. J.; Lewis, J. A., Architected cellular ceramics with tailored stiffness via direct foam writing. Proc. Natl. Acad. Sci. U.S.A. 2017, 114 (8), 1832-1837.
47. Skylar-Scott, M. A.; Mueller, J.; Visser, C. W.; Lewis, J. A., Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 2019, 575 (7782), 330-335.
48. Saadi, M.; Maguire, A.; Pottackal, N. T.; Thakur, M. S. H.; Ikram, M. M.; Hart, A. J.; Ajayan, P. M.; Rahman, M. M., Direct ink writing: A 3D printing technology for diverse materials. Adv. Mater. 2022, e2108855.
49. Solís Pinargote, N. W.; Smirnov, A.; Peretyagin, N.; Seleznev, A.; Peretyagin, P., Direct ink writing technology (3D printing) of graphene-based ceramic nanocomposites: A review. Nanomaterials 2020, 10 (7), 1300.
50. Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A., Nanocelluloses: A new family of nature‐based materials. Angew. Chem. Int. Ed. 2011, 50 (24), 5438-5466.
51. Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J., Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40 (7), 3941-3994.
52. Ng, H.-M.; Sin, L. T.; Tee, T.-T.; Bee, S.-T.; Hui, D.; Low, C.-Y.; Rahmat, A., Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos. B. Eng. 2015, 75, 176-200.
53. Abushammala, H.; Krossing, I.; Laborie, M.-P., Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr. Polym. 2015, 134, 609-616.
54. Du, H.; Liu, W.; Zhang, M.; Si, C.; Zhang, X.; Li, B., Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr. Polym. 2019, 209, 130-144.
55. Ferreira, F. V.; Dufresne, A.; Pinheiro, I. F.; Souza, D. H. S.; Gouveia, R. F.; Mei, L. H. I.; Lona, L. M. F., How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: A comprehensive review. Eur. Polym. J. 2018, 108, 274-285.
56. Habibi, Y.; Lucia, L. A.; Rojas, O. J., Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem. Rev. 2010, 110 (6), 3479-3500.
57. Liu, D.; Chen, X.; Yue, Y.; Chen, M.; Wu, Q., Structure and rheology of nanocrystalline cellulose. Carbohydr. Polym. 2011, 84 (1), 316-322.
58. Mali, P.; Sherje, A. P., Cellulose nanocrystals: Fundamentals and biomedical applications. Carbohydr. Polym. 2022, 275, 118668.
59. Mariano, M.; El Kissi, N.; Dufresne, A., Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges. J. Polym. Sci. B: Polym. Phys. 2014, 52 (12), 791-806.
60. Shafiei-Sabet, S.; Hamad, W. Y.; Hatzikiriakos, S. G., Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 2012, 28 (49), 17124-17133.
61. Tang, J.; Sisler, J.; Grishkewich, N.; Tam, K. C., Functionalization of cellulose nanocrystals for advanced applications. J. Colloid Interface Sci. 2017, 494, 397-409.
62. Xie, S.; Zhang, X.; Walcott, M. P.; Lin, H., Applications of cellulose nanocrystals: A review. Eng. Sci. 2018, 4-16.
63. Lin, N.; Huang, J.; Dufresne, A., Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: A review. Nanoscale 2012, 4 (11), 3274-3294.
64. Brinchi, L.; Cotana, F.; Fortunati, E.; Kenny, J., Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydr. Polym. 2013, 94 (1), 154-169.
65. Tan, X. Y.; Abd Hamid, S. B.; Lai, C. W., Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass Bioenergy 2015, 81, 584-591.
66. Chen, X.; Deng, X.; Shen, W.; Jiang, L., Controlled enzymolysis preparation of nanocrystalline cellulose from pretreated cotton fibers. BioResources 2012, 7 (3), 4237-4248.
67. Satyamurthy, P.; Jain, P.; Balasubramanya, R. H.; Vigneshwaran, N., Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydr. Polym. 2011, 83 (1), 122-129.
68. Amin, K. N. M.; Annamalai, P. K.; Morrow, I. C.; Martin, D., Production of cellulose nanocrystals via a scalable mechanical method. RSC Adv. 2015, 5 (70), 57133-57140.
69. Yu, H.; Qin, Z.; Liang, B.; Liu, N.; Zhou, Z.; Chen, L., Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J. Mater. Chem. A 2013, 1 (12), 3938-3944.
70. Iwamoto, S.; Kai, W.; Isogai, A.; Iwata, T., Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 2009, 10 (9), 2571-2576.
71. Siqueira, G.; Kokkinis, D.; Libanori, R.; Hausmann, M. K.; Gladman, A. S.; Neels, A.; Tingaut, P.; Zimmermann, T.; Lewis, J. A.; Studart, A. R., Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Adv. Funct. Mater. 2017, 27 (12), 1604619.
72. Yu, H.-Y.; Qin, Z.-Y.; Yan, C.-F.; Yao, J.-M., Green nanocomposites based on functionalized cellulose nanocrystals: A study on the relationship between interfacial interaction and property enhancement. ACS Sustain. Chem. Eng. 2014, 2 (4), 875-886.
73. Kedzior, S. A.; Zoppe, J. O.; Berry, R. M.; Cranston, E. D., Recent advances and an industrial perspective of cellulose nanocrystal functionalization through polymer grafting. Curr. Opin. Solid State Mater. Sci. 2019, 23 (2), 74-91.
74. Espino-Pérez, E.; Domenek, S.; Belgacem, N.; Sillard, C.; Bras, J., Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromolecules 2014, 15 (12), 4551-4560.
75. Aloulou, F.; Boufi, S.; Belgacem, N.; Gandini, A., Adsorption of cationic surfactants and subsequent adsolubilization of organic compounds onto cellulose fibers. Colloid Polym. Sci 2004, 283 (3), 344-350.
76. Araki, J.; Wada, M.; Kuga, S., Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting. Langmuir 2001, 17 (1), 21-27.
77. Hasani, M.; Cranston, E. D.; Westman, G.; Gray, D. G., Cationic surface functionalization of cellulose nanocrystals. Soft Matter 2008, 4 (11), 2238-2244.
78. de Castro, D. O.; Bras, J.; Gandini, A.; Belgacem, N., Surface grafting of cellulose nanocrystals with natural antimicrobial rosin mixture using a green process. Carbohydr. Polym. 2016, 137, 1-8.
79. Capron, I.; Rojas, O. J.; Bordes, R., Behavior of nanocelluloses at interfaces. Curr. Opin. Colloid Interface Sci. 2017, 29, 83-95.
80. Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V., Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, (1), 70-71.
81. Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jerome, F., Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41 (21), 7108-46.
82. Kalhor, P.; Ghandi, K., Deep eutectic solvents for pretreatment, extraction, and catalysis of biomass and food waste. Molecules 2019, 24 (22).
83. Smith, E. L.; Abbott, A. P.; Ryder, K. S., Deep eutectic solvents (DESs) and their applications. Chemical reviews 2014, 114 (21), 11060-11082.
84. Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W.; Gurkan, B.; Maginn, E. J.; Ragauskas, A.; Dadmun, M.; Zawodzinski, T. A.; Baker, G. A.; Tuckerman, M. E.; Savinell, R. F.; Sangoro, J. R., Deep eutectic solvents: A review of fundamentals and applications. Chem. Rev. 2021, 121 (3), 1232-1285.
85. Abbott, A. P.; Barron, J. C.; Ryder, K. S.; Wilson, D., Eutectic-based ionic liquids with metal-containing anions and cations. Chemistry 2007, 13 (22), 6495-501.
86. Abranches, D. O.; Martins, M. A. R.; Silva, L. P.; Schaeffer, N.; Pinho, S. P.; Coutinho, J. A. P., Phenolic hydrogen bond donors in the formation of non-ionic deep eutectic solvents: The quest for type V DES. Chem. Commun. 2019, 55 (69), 10253-10256.
87. Wazeer, I.; Hayyan, M.; Hadj-Kali, M. K., Deep eutectic solvents: designer fluids for chemical processes. J. Chem. Technol. Biotechnol. 2018, 93 (4), 945-958.
88. Stefanovic, R.; Ludwig, M.; Webber, G. B.; Atkin, R.; Page, A. J., Nanostructure, hydrogen bonding and rheology in choline chloride deep eutectic solvents as a function of the hydrogen bond donor. Phys. Chem. Chem. Phys. 2017, 19 (4), 3297-3306.
89. Abbott, A. P.; Capper, G.; Davies, D. L.; Munro, H. L.; Rasheed, R. K.; Tambyrajah, V., Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem. Commun. 2001, (19), 2010-2011.
90. Smith, E. L.; Abbott, A. P.; Ryder, K. S., Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014, 114 (21), 11060-11082.
91. Fazende, K. F.; Gary, D. P.; Mota‐Morales, J. D.; Pojman, J. A., Kinetic studies of photopolymerization of monomer‐containing deep eutectic solvents. Macromol. Chem. Phys. 2020, 221 (6).
92. Li, C.-Y.; Yu, S.-S., Efficient visible-light-driven RAFT polymerization mediated by deep eutectic solvents under an open-to-air environment. Macromolecules 2021, 54 (21), 9825-9836.
93. Wang, M.; Zhang, P.; Shamsi, M.; Thelen, J. L.; Qian, W.; Truong, V. K.; Ma, J.; Hu, J.; Dickey, M. D., Tough and stretchable ionogels by in situ phase separation. Nat. Mater. 2022, 21 (3), 359-365.
94. Ming, X.; Du, J.; Zhang, C.; Zhou, M.; Cheng, G.; Zhu, H.; Zhang, Q.; Zhu, S., All-solid-state self-healing ionic conductors enabled by ion-dipole interactions within fluorinated poly(ionic liquid) copolymers. ACS Appl. Mater. Interfaces 2021, 13 (34), 41140-41148.
95. Shi, P.; Wang, Y.; Tjiu, W. W.; Zhang, C.; Liu, T., Highly stretchable, fast self-healing, and waterproof fluorinated copolymer ionogels with selectively enriched ionic liquids for human-motion detection. ACS Appl. Mater. Interfaces 2021, 13 (41), 49358-49368.
96. Noro, A.; Hayashi, M.; Ohshika, A.; Matsushita, Y., Simple preparation of supramolecular polymer gels via hydrogen bonding by blending two liquid polymers. Soft Matter 2011, 7 (5).
97. Hong, S.; Yuan, Y.; Liu, C.; Chen, W.; Chen, L.; Lian, H.; Liimatainen, H., A stretchable and compressible ion gel based on a deep eutectic solvent applied as a strain sensor and electrolyte for supercapacitors. J. Mater. Chem. C 2020, 8 (2), 550-560.
98. Wang, Y.; Wang, J.; Ma, Z.; Yan, L., A Highly Conductive, Self-Recoverable, and Strong Eutectogel of a Deep Eutectic Solvent with Polymer Crystalline Domain Regulation. ACS Appl Mater Interfaces 2021, 13 (45), 54409-54416.
99. Lai, C. W.; Yu, S. S., 3D printable strain sensors from deep eutectic solvents and cellulose nanocrystals. ACS Appl. Mater. Interfaces 2020, 12 (30), 34235-34244.
100. Li, M.-C.; Mei, C.; Xu, X.; Lee, S.; Wu, Q., Cationic surface modification of cellulose nanocrystals: Toward tailoring dispersion and interface in carboxymethyl cellulose films. Polymer 2016, 107, 200-210.
101. Tang, Y.; Wang, X.; Huang, B.; Wang, Z.; Zhang, N., Effect of cationic surface modification on the rheological behavior and microstructure of nanocrystalline cellulose. Polymers 2018, 10 (3).
102. Oguzlu, H.; Danumah, C.; Boluk, Y., Colloidal behavior of aqueous cellulose nanocrystal suspensions. Curr. Opin. Colloid Interface Sci. 2017, 29, 46-56.
103. Cho, S.; Hwang, S. Y.; Oh, D. X.; Park, J., Recent progress in self-healing polymers and hydrogels based on reversible dynamic B–O bonds: boronic/boronate esters, borax, and benzoxaborole. J. Mater. Chem. A 2021, 9 (26), 14630-14655.
104. Shao, C.; Wang, M.; Meng, L.; Chang, H.; Wang, B.; Xu, F.; Yang, J.; Wan, P., Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem. Mater. 2018, 30 (9), 3110-3121.
105. Yang, J.; Han, C.-R.; Zhang, X.-M.; Xu, F.; Sun, R.-C., Cellulose nanocrystals mechanical reinforcement in composite hydrogels with multiple cross-links: Correlations between dissipation properties and deformation mechanisms. Macromolecules 2014, 47 (12), 4077-4086.
106. Zhang, T.; Cheng, Q.; Ye, D.; Chang, C., Tunicate cellulose nanocrystals reinforced nanocomposite hydrogels comprised by hybrid cross-linked networks. Carbohydr. Polym. 2017, 169, 139-148.
107. Zhang, T.; Zuo, T.; Hu, D.; Chang, C., Dual physically cross-linked nanocomposite hydrogels reinforced by tunicate cellulose nanocrystals with high toughness and good self-recoverability. ACS Appl. Mater. Interfaces 2017, 9 (28), 24230-24237.
108. Anjum, S.; Gurave, P.; Badiger, M. V.; Torris, A.; Tiwari, N.; Gupta, B., Design and development of trivalent aluminum ions induced self-healing polyacrylic acid novel hydrogels. Polymer 2017, 126, 196-205.
109. Ning, J.; Li, G.; Haraguchi, K., Synthesis of highly stretchable, mechanically tough, zwitterionic sulfobetaine nanocomposite gels with controlled thermosensitivities. Macromolecules 2013, 46 (13), 5317-5328.
110. Zhang, J.; Luo, N.; Zhang, X.; Xu, L.; Wu, J.; Yu, J.; He, J.; Zhang, J., All-cellulose nanocomposites reinforced with in situ retained cellulose nanocrystals during selective dissolution of cellulose in an ionic liquid. ACS Sustain. Chem. Eng. 2016, 4 (8), 4417-4423.
111. Yin, X.-Y.; Zhang, Y.; Cai, X.; Guo, Q.; Yang, J.; Wang, Z. L., 3D printing of ionic conductors for high-sensitivity wearable sensors. Mater. Horiz. 2019, 6 (4), 767-780.
112. Lai, P.-C.; Yu, S.-S., Cationic cellulose nanocrystals-based nanocomposite hydrogels: Achieving 3D printable capacitive sensors with high transparency and mechanical strength. Polymers 2021, 13 (5), 688.
113. Chang, H.; Luo, J.; Bakhtiary Davijani, A. A.; Chien, A.-T.; Wang, P.-H.; Liu, H. C.; Kumar, S., Individually dispersed wood-based cellulose nanocrystals. ACS Appl. Mater. Interfaces 2016, 8 (9), 5768-5771.
114. Calabrese, V.; Muñoz-García, J. C.; Schmitt, J.; Da Silva, M. A.; Scott, J. L.; Angulo, J.; Khimyak, Y. Z.; Edler, K. J., Understanding heat driven gelation of anionic cellulose nanofibrils: Combining saturation transfer difference (STD) NMR, small angle X-ray scattering (SAXS) and rheology. J. Colloid Interface Sci. 2019, 535, 205-213.
115. Chau, M.; Sriskandha, S. E.; Pichugin, D.; Thérien-Aubin, H.; Nykypanchuk, D.; Chauve, G.; Méthot, M.; Bouchard, J.; Gang, O.; Kumacheva, E., Ion-mediated gelation of aqueous suspensions of cellulose nanocrystals. Biomacromolecules 2015, 16 (8), 2455-2462.
116. Beaudoin, G.; Lasri, A.; Zhao, C.; Liberelle, B.; De Crescenzo, G.; Zhu, X.-X., Making Hydrophilic Polymers Thermoresponsive: The Upper Critical Solution Temperature of Copolymers of Acrylamide and Acrylic Acid. Macromolecules 2021, 54 (17), 7963-7969.
117. Sun, S.; Hu, J.; Tang, H.; Wu, P., Spectral interpretation of thermally irreversible recovery of poly (N-isopropylacrylamide-co-acrylic acid) hydrogel. Physical Chemistry Chemical Physics 2011, 13 (11), 5061-5067.
118. Futscher, M. H.; Philipp, M.; Müller-Buschbaum, P.; Schulte, A., The role of backbone hydration of poly (N-isopropyl acrylamide) across the volume phase transition compared to its monomer. Scientific reports 2017, 7 (1), 1-10.
119. Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K., Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc. 2004, 126 (29), 9142-9147.
120. Jang, K. I.; Chung, H. U.; Xu, S.; Lee, C. H.; Luan, H.; Jeong, J.; Cheng, H.; Kim, G. T.; Han, S. Y.; Lee, J. W.; Kim, J.; Cho, M.; Miao, F.; Yang, Y.; Jung, H. N.; Flavin, M.; Liu, H.; Kong, G. W.; Yu, K. J.; Rhee, S. I.; Chung, J.; Kim, B.; Kwak, J. W.; Yun, M. H.; Kim, J. Y.; Song, Y. M.; Paik, U.; Zhang, Y.; Huang, Y.; Rogers, J. A., Soft network composite materials with deterministic and bio-inspired designs. Nat. Commun. 2015, 6, 6566.