簡易檢索 / 詳目顯示

研究生: 馬佳琪
Laspona, Ma. Patricia Astrid
論文名稱: 以鍶離子改質羥基磷灰石作為生質柴油轉酯化反應之鹼性催化劑
Strontium ion-modified hydroxyapatite as basic catalyst in transesterification for biodiesel production
指導教授: 許文東
Hsu, Wen-Dung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 56
中文關鍵詞: 廢棄蛋殼羥基磷灰石鹼性催化劑鍶離子轉酯化反應
外文關鍵詞: waste eggshells, hydroxyapatite, basic catalyst, strontium, transesterification
相關次數: 點閱:78下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著對能源需求的增加,人們不斷地發現與發展新技術。全球目前主要的使用能源來自於天然的石化燃料,然而其為非再生能源,且使用後排放出溫室氣造成環境問題,如全球氣候變遷。
    生質柴油因具有無毒、可再,且可應用於現今之引擎之幾項特點,被認為是未來有機會可取代石化燃料之替代品。
    羥基磷灰石(Ca10(PO4)6(OH)2)因結構特性、熱穩定性、可吸附物質以及離子交換能力,使許多不同領域都對此材料很感興趣,包括;廢水處理、生物醫學材料、催化劑。此外,自然界中含有大量的此種礦物使羥基磷灰石更加吸引人們將其使用在不同的應用中。
    本實驗中,成功透過兩種合成方法,將廢棄蛋殼合成為羥基磷灰石(HAp)。在合成羥基磷灰石過程中加入鍶前驅物,可透過濕化學法過程合成鍶摻雜之羥基磷灰石。另外,可透過濕式含浸法將合成之羥基磷灰石負載鍶前驅物。並透過XRD、SEM-EDS、ICP、BET分析合成之催化劑性質,而1H NMR光譜則用來定量分析生質柴油產率。實驗結果顯示,當大豆油與5 wt.%催化劑、9:1之甲醇與油莫耳比在65°C反應6小時候,可達到最高產率,約92.44%。

    With the continuous discovery and development of new technology comes a parallel increase in the demand for energy. The current main source of energy of the world today comes from fossil fuels, which are natural, finite resources and which contribute to greenhouse gas emissions, contributing to current environmental problems, such as climate change.
    Biodiesel proves to be a promising alternative to current diesel fuel, since it is considered to be non-toxic, renewable and ready-for-use with the existing engines.
    Hydroxyapatite (Ca10(PO4)6(OH)2) has been a material of interest in various fields, including waste water treatment, biomedical materials and catalysis, due to its desireable properties, such as structure, thermal stability, adsoroption capacity and ion-exchange ability. This mineral is abundant in nature which makes it attractive for use in different applications.
    HAp was successfully synthesized from waste eggshells, via two synthesis routes. Sr-doped HAp was produced from wet chemical process, wherein Sr precursor were added upon HAp synthesis. On the other hand, HAp synthesis was followed by loading of the Sr precursor via wet impregnation method. XRD, SEM-EDS, ICP and BET analysis were used to characterize the synthesized catalysts. 1H NMR Spectroscopy was used to quantify biodiesel conversion yield. Transesterification reactions of soybean oil with 5 wt.% catalyst loading and 9:1 methanol-to-oil ratio at 65°C for 6 hours achieved a maximum biodiesel conversion yield of 92.44%.

    摘要 ii ABSTRACT iii ACKNOWLDEGEMENTS iv TABLE OF CONTENTS vi LIST OF TABLES viii LIST OF FIGURES ix CHAPTER 1 INTRODUCTION 1 1. Global Energy Demand 1 2. Biodiesel 2 2.1. Methods of Producing Biodiesel 3 2.1.1. Direct Use of Vegetable Oil 3 2.1.2. Microemulsions 4 2.1.3. Thermal cracking/Pyrolysis 4 2.1.4. Transesterification 4 2.1.4.1. Mechanism 5 2.2. Catalysts 6 2.2.1. Acidic Catalysts 7 2.2.2. Basic Catalysts 7 2.2.2.1. Homogeneous Catalysts 7 2.2.2.2. Heterogeneous Catalysts 7 2.2.3. Alkaline Earth Metal Oxides 8 2.2.3.1. Strontium oxide 8 2.2.3.2. Calcium oxide 9 2.2.3.3. Magnesium oxide 9 2.2.4. Catalyst supports 9 2.2.4.1. Alumina 10 2.2.4.2. Silicates/silica 10 3. Hydroxyapatite 10 3.1. Hydroxyapatite as catalyst support 13 3.2. Synthesis Methods 14 3.3. Sustainability 14 4. Motivation 16 CHAPTER 2 EXPERIMENTAL SECTION 17 1. Materials 17 2. Methodology 17 2.1. Eggshells as CaO source 17 2.2. Doping of Sr into Hydroxyapatite 17 2.3. Loading of Sr onto Hydroxyapatite 17 3. Characterization Techniques 18 4. Transesterification 19 CHAPTER 3 RESULTS AND DISCUSSION 21 1. Waste eggshells as CaO source 21 1.1. Thermogravimetric Analysis and Differential Scanning Calorimetry (TGA-DSC) 21 1.2. X-ray Diffraction (XRD) 22 2. Doping of Sr into Hydroxyapatite 23 2.1. X-ray Diffraction (XRD) 23 2.2. Transesterification 27 3. Loading of Sr onto Hydroxyapatite 27 3.1. X-ray Diffraction (XRD) 28 3.2. Scanning Electron Microscope with Energy Dispersive X-Ray Spectroscopy (SEM-EDS) 33 3.3. Inductively Coupled Plasma Spectroscopy (ICP) 37 3.4. Brunauer–Emmett–Teller Analysis (BET Analysis) 39 4. Transesterification 40 4.1. Leaching Test 43 4.2. Reusability Test 44 CHAPTER 4 CONCLUSION 47 RECOMMENDATIONS 49 REFERENCES 50

    [1] International Energy Agency, Key World Energy Statistics 2016. Paris, 2016.
    [2] O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, and J. C. Minx, Eds., Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press, 2014.
    [3] I. M. Atadashi, M. K. Aroua, and A. A. Aziz, “High quality biodiesel and its diesel engine application: A review,” Renew. Sustain. Energy Rev., vol. 14, no. 7, pp. 1999–2008, 2010.
    [4] A. F. Lee, J. A. Bennett, J. C. Manayil, and K. Wilson, “Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification,” Chem. Soc. Rev., vol. 43, pp. 7887–7916, 2014.
    [5] R. M. Joshi and M. J. Pegg, “Flow properties of biodiesel fuel blends at low temperatures,” Fuel, vol. 86, no. 1–2, pp. 143–151, 2007.
    [6] A. Demirbas, Biofuels: Securing the Planet’s Future Energy Needs, Illustrate. London: Springer Science & Business Media, 2008.
    [7] F. Ma and M. A. Hanna, “Biodiesel production: a review,” Bioresour. Technol., vol. 70, pp. 1–15, 1999.
    [8] L. C. Meher, D. Vidya Sagar, and S. N. Naik, “Technical aspects of biodiesel production by transesterification - A review,” Renew. Sustain. Energy Rev., vol. 10, no. 3, pp. 248–268, 2006.
    [9] N. N. A. N. Yusuf, S. K. Kamarudin, and Z. Yaakub, “Overview on the current trends in biodiesel production,” Energy Convers. Manag., vol. 52, no. 7, pp. 2741–2751, 2011.
    [10] A. E. Atabani, A. S. Silitonga, I. Anjum, T. M. I. Mahlia, H. H. Masjuki, and S. Mekhilef, “A comprehensive review on biodiesel as an alternative energy resource and its characteristics,” Renew. Sustain. Energy Rev., vol. 16, no. 4, pp. 2070–2093, 2012.
    [11] D. Y. C. Leung, X. Wu, and M. K. H. Leung, “A review on biodiesel production using catalyzed transesterification,” Appl. Energy, vol. 87, no. 4, pp. 1083–1095, 2010.
    [12] S. H. Teo, Y. H. Taufiq-Yap, U. Rashid, and A. Islam, “Hydrothermal effect on synthesis, characterization and catalytic properties of calcium methoxide for biodiesel production from crude Jatropha curcas,” RSC Adv., vol. 5, no. 6, pp. 4266–4276, 2015.
    [13] M. K. Lam, K. T. Lee, and A. R. Mohamed, “Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review,” Biotechnol. Adv., vol. 28, no. 4, pp. 500–518, 2010.
    [14] E. L. Dall’Oglio, P. T. De Sousa, P. T. De Jesus Oliveira, L. G. De Vasconcelos, C. A. Parizotto, and C. A. Kuhnen, “Use of heterogeneous catalysts in methylic biodiesel production induced by microwave irradiation,” Quim. Nova, vol. 37, no. 3, pp. 411–417, 2014.
    [15] A. A. Refaat, “Biodiesel production using solid metal oxide catalysts,” Int. J. Environ. Sci. Technol., vol. 8, no. 1, pp. 203–221, 2010.
    [16] M. Zabeti, W. M. A. Wan Daud, and M. K. Aroua, “Activity of solid catalysts for biodiesel production: A review,” Fuel Process. Technol., vol. 90, no. 6, pp. 770–777, 2009.
    [17] A. K. Dalai, T. Issariyakul, and C. Baroi, “Biodiesel Production Using Homogeneous and Heterogeneous Catalysts: A Review,” in Catalysis for Alternative Energy Generation, L. Guczi and A. Erdôhelyi, Eds. New York, NY: Springer New York, 2012, pp. 237–262.
    [18] X. Liu, H. He, Y. Wang, and S. Zhu, “Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst,” Catal. Commun., vol. 8, no. 7, pp. 1107–1111, 2007.
    [19] M. L. Granados, M. D. Z. Poves, D. M. Alonso, R. Mariscal, F. C. Galisteo, R. Moreno-Tost, J. Santamaría, and J. L. G. Fierro, “Biodiesel from sunflower oil by using activated calcium oxide,” Appl. Catal. B Environ., vol. 73, no. 3, pp. 317–326, 2007.
    [20] M. Manríquez-Ramírez, R. Gómez, J. G. Hernández-Cortez, A. Zúñiga-Moreno, C. M. Reza-San Germán, and S. O. Flores-Valle, “Advances in the transesterification of triglycerides to biodiesel using MgO-NaOH, MgO-KOH and MgO-CeO2 as solid basic catalysts,” Catal. Today, vol. 212, pp. 23–30, 2013.
    [21] X. Zhao, L. Wei, S. Cheng, and J. Julson, “Review of Heterogeneous Catalysts for Catalytically Upgrading Vegetable Oils into Hydrocarbon Biofuels,” Catalysts, vol. 7, no. 3, p. 83, Mar. 2017.
    [22] M. Zabeti, W. M. A. W. Daud, and M. K. Aroua, “Biodiesel production using alumina-supported calcium oxide: An optimization study,” Fuel Process. Technol., vol. 91, no. 2, pp. 243–248, 2010.
    [23] W. Xie and H. Li, “Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil,” J. Mol. Catal. A Chem., vol. 255, no. 1–2, pp. 1–9, 2006.
    [24] I. Lukić, J. Krstić, D. Jovanović, and D. Skala, “Alumina/silica supported K2CO3 as a catalyst for biodiesel synthesis from sunflower oil,” Bioresour. Technol., vol. 100, no. 20, pp. 4690–4696, 2009.
    [25] G. Y. Chen, R. Shan, J. F. Shi, and B. B. Yan, “Transesterification of palm oil to biodiesel using rice husk ash-based catalysts,” Fuel Processing Technology, vol. 133. pp. 8–13, 2015.
    [26] S. Koutsopoulos, “Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods,” J. Biomed. Mater. Res., vol. 62, no. 4, pp. 600–612, 2002.
    [27] M. H. Uddin, T. Matsumoto, M. Okazaki, A. Nakahira, and T. Sohmura, “Biomimetic Fabrication of Apatite Related Biomaterials,” in Biomimetics Learning from Nature, A. Mukherjee, Ed. Rijeka: InTech, 2010.
    [28] J. Zeglinski, M. Nolan, M. Bredol, A. Schatte, and S. A. M. Tofail, “Unravelling the specific site preference in doping of calcium hydroxyapatite with strontium from ab initio investigations and Rietveld analyses,” Phys. Chem. Chem. Phys., vol. 14, no. 10, p. 3435, Feb. 2012.
    [29] J. Terra, E. R. Dourado, J.-G. Eon, D. E. Ellis, G. Gonzalez, and A. M. Rossi, “The structure of strontium-doped hydroxyapatite: an experimental and theoretical study.,” Phys. Chem. Chem. Phys., vol. 11, no. 3, pp. 568–577, 2009.
    [30] T. Suzuki, T. Hatsushika, and Y. Hayakawa, “Synthetic hydroxyapatites employed as inorganic cation-exchangers,” J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol. 77, no. 5, p. 1059, Jan. 1981.
    [31] T. Suzuki, T. Hatsushika, and M. Miyake, “Synthetic hydroxyapatites as inorganic cation exchangers. Part 2,” J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol. 78, no. 12, p. 3605, Jan. 1982.
    [32] Y. Xu, F. W. Schwartr, and S. J. Traina, “Sorption of Zn2+ and Cd2+ on Hydroxyapatite Surfaces,” Environ. Sci. Technol, vol. 28, pp. 1472–1480, 1994.
    [33] W. Janusz and E. Skwarek, “Study of sorption processes of strontium on the synthetic hydroxyapatite,” Adsorption, vol. 22, no. 4–6, pp. 697–706, 2016.
    [34] X. Jiang and J. Zhang, “Iron Catalysis for Room-Temperature Aerobic Oxidation of Alcohols to Carboxylic Acids,” J. Am. Chem. Soc., pp. 8344–8347, 2016.
    [35] K. Mori, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, “Hydroxyapatite-Supported Palladium Nanoclusters : A Highly Active Heterogeneous Catalyst for Selective Oxidation of Alcohols by Use of Molecular Oxygen,” J. Am. Chem. Soc., no. m, pp. 10657–10666, 2004.
    [36] M. Umar and H. A. Aziz, “Photocatalytic Degradation of Organic Pollutants in Water,” in Organic Pollutants - Monitoring, Risk and Treatment, M. N. Rashed, Ed. Rijeka: InTech, 2013.
    [37] M. P. Reddy, A. Venugopal, and M. Ã. Subrahmanyam, “Hydroxyapatite-supported Ag – TiO 2 as Escherichia coli disinfection photocatalyst,” Water Res., vol. 41, no. 60305, pp. 379–386, 2007.
    [38] G. Chen, R. Shan, J. Shi, C. Liu, and B. Yan, “Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts,” Energy Convers. Manag., vol. 98, pp. 463–469, 2015.
    [39] E. C. Moreno, T. M. Gregory, and W. E. Brown, “Preparation and Solubility of Hydroxyapatite,” J. Res. Natl. Bur. Stand. - A. Phys. Chem., vol. 72, no. 6, pp. 773–782, 1968.
    [40] V. P. Orlovskii, V. S. Komlev, and S. M. Barinov, “Hydroxyapatite and Hydroxyapatite-Based Ceramics,” Inorg. Mater., vol. 38, no. 10, pp. 973–984, 2002.
    [41] D.-M. Liu, T. Troczynski, and W. J. Tseng, “Water-based sol–gel synthesis of hydroxyapatite: process development,” Biomaterials, vol. 22, no. 13, pp. 1721–1730, Jul. 2001.
    [42] T. T. T. Pham, T. P. Nguyen, T. N. Pham, T. P. Vu, D. L. Tran, H. Thai, and T. M. T. Dinh, “Impact of physical and chemical parameters on the hydroxyapatite nanopowder synthesized by chemical precipitation method,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 4, no. 3, p. 35014, Jul. 2013.
    [43] M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, and A. Jamshidi, “Synthesis methods for nanosized hydroxyapatite with diverse structures,” Acta Biomater., vol. 9, no. 8, pp. 7591–7621, Aug. 2013.
    [44] J. S. Earl, D. J. Wood, and S. J. Milne, “Hydrothermal synthesis of hydroxyapatite,” J. Phys. Conf. Ser., vol. 26, pp. 268–271, Feb. 2006.
    [45] M. Akram, R. Ahmed, I. Shakir, W. A. W. Ibrahim, and R. Hussain, “Extracting hydroxyapatite and its precursors from natural resources,” J. Mater. Sci., vol. 49, no. 4, pp. 1461–1475, Feb. 2014.
    [46] A. Conway, “Global egg consumption to rise worldwide through 2024 | WATTAgNet,” WATTAgNet, 2015. [Online]. Available: http://www.wattagnet.com/articles/25047-global-egg-consumption-to-rise-worldwide-through-2024. [Accessed: 30-Jun-2017].
    [47] “Morphological Diversity in Nanohydroxyapatite Synthesized from Waste Egg Shell : Verification and Optimization of Various Synthesis Parameters,” Int. J. Sci. Technoledge, pp. 2321–919, 2014.
    [48] X. Meng and D. Deng, “Trash to Treasure: Waste Eggshells Used as Reactor and Template for Synthesis of Co9S8 Nanorod Arrays on Carbon Fibers for Energy Storage,” Chem. Mater., vol. 28, no. 11, pp. 3897–3904, 2016.
    [49] L. T. Thanh, K. Okitsu, L. Van Boi, and Y. Maeda, “Catalytic Technologies for Biodiesel Fuel Production and Utilization of Glycerol: A Review,” Catalysts, vol. 2, no. 4, pp. 191–222, 2012.
    [50] A. Mohammadshirazi, A. Akram, S. Rafiee, and E. Bagheri Kalhor, “Energy and cost analyses of biodiesel production from waste cooking oil,” Renew. Sustain. Energy Rev., vol. 33, pp. 44–49, May 2014.
    [51] G. Gelbard, O. Brès, R. M. Vargas, F. Vielfaure, and U. F. Schuchardt, “1H nuclear magnetic resonance determination of the yield of the transesterification of rapeseed oil with methanol,” J. Am. Oil Chem. Soc., vol. 72, no. 10, pp. 1239–1241, Oct. 1995.
    [52] R. Ramli, A. Z. O. Arawi, M. M. Mahat, A. F. Mohd., and M. F. Z. R. Yahya, “Effect of silver (Ag) substitution nano-hydroxyapatite synthesis by microwave processing,” in 2011 International Conference on Business, Engineering and Industrial Applications, 2011, pp. 180–183.
    [53] H. B. Lu, C. T. Campbell, D. J. Graham, and B. D. Ratner, “Surface Characterization of Hydroxyapatite and Related Calcium Phosphates by XPS and TOF-SIMS,” Anal. Chem., vol. 72, no. 13, pp. 2886–2894, 2000.
    [54] A. Zanotto, M. L. Saladino, D. Chillura Martino, and E. Caponetti, “Influence of Temperature on Calcium Hydroxyapatite Nanopowders,” Adv. Nanoparticles, vol. 1, pp. 21–28, 2012.
    [55] M. Bilton, S. J. Milne, and A. P. Brown, “Comparison of Hydrothermal and Sol-Gel Synthesis of Nano-Particulate Hydroxyapatite by Characterisation at the Bulk and Particle Level,” Open J. Inorg. Non-metallic Mater., vol. 2, pp. 1–10, 2012.
    [56] Y. Li, D. Wang, and S. Lim, “Fabrication and Applications of Metal-Ion-Doped Hydroxyapatite Nanoparticles,” JOJ Mater. Sci., vol. 1, no. 2, 2017.
    [57] “ASTM D6751-15ce1 Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels.” ASTM International, West Conshohocken, PA, 2015.
    [1] International Energy Agency, Key World Energy Statistics 2016. Paris, 2016.
    [2] O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, and J. C. Minx, Eds., Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press, 2014.
    [3] I. M. Atadashi, M. K. Aroua, and A. A. Aziz, “High quality biodiesel and its diesel engine application: A review,” Renew. Sustain. Energy Rev., vol. 14, no. 7, pp. 1999–2008, 2010.
    [4] A. F. Lee, J. A. Bennett, J. C. Manayil, and K. Wilson, “Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification,” Chem. Soc. Rev., vol. 43, pp. 7887–7916, 2014.
    [5] R. M. Joshi and M. J. Pegg, “Flow properties of biodiesel fuel blends at low temperatures,” Fuel, vol. 86, no. 1–2, pp. 143–151, 2007.
    [6] A. Demirbas, Biofuels: Securing the Planet’s Future Energy Needs, Illustrate. London: Springer Science & Business Media, 2008.
    [7] F. Ma and M. A. Hanna, “Biodiesel production: a review,” Bioresour. Technol., vol. 70, pp. 1–15, 1999.
    [8] L. C. Meher, D. Vidya Sagar, and S. N. Naik, “Technical aspects of biodiesel production by transesterification - A review,” Renew. Sustain. Energy Rev., vol. 10, no. 3, pp. 248–268, 2006.
    [9] N. N. A. N. Yusuf, S. K. Kamarudin, and Z. Yaakub, “Overview on the current trends in biodiesel production,” Energy Convers. Manag., vol. 52, no. 7, pp. 2741–2751, 2011.
    [10] A. E. Atabani, A. S. Silitonga, I. Anjum, T. M. I. Mahlia, H. H. Masjuki, and S. Mekhilef, “A comprehensive review on biodiesel as an alternative energy resource and its characteristics,” Renew. Sustain. Energy Rev., vol. 16, no. 4, pp. 2070–2093, 2012.
    [11] D. Y. C. Leung, X. Wu, and M. K. H. Leung, “A review on biodiesel production using catalyzed transesterification,” Appl. Energy, vol. 87, no. 4, pp. 1083–1095, 2010.
    [12] S. H. Teo, Y. H. Taufiq-Yap, U. Rashid, and A. Islam, “Hydrothermal effect on synthesis, characterization and catalytic properties of calcium methoxide for biodiesel production from crude Jatropha curcas,” RSC Adv., vol. 5, no. 6, pp. 4266–4276, 2015.
    [13] M. K. Lam, K. T. Lee, and A. R. Mohamed, “Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review,” Biotechnol. Adv., vol. 28, no. 4, pp. 500–518, 2010.
    [14] E. L. Dall’Oglio, P. T. De Sousa, P. T. De Jesus Oliveira, L. G. De Vasconcelos, C. A. Parizotto, and C. A. Kuhnen, “Use of heterogeneous catalysts in methylic biodiesel production induced by microwave irradiation,” Quim. Nova, vol. 37, no. 3, pp. 411–417, 2014.
    [15] A. A. Refaat, “Biodiesel production using solid metal oxide catalysts,” Int. J. Environ. Sci. Technol., vol. 8, no. 1, pp. 203–221, 2010.
    [16] M. Zabeti, W. M. A. Wan Daud, and M. K. Aroua, “Activity of solid catalysts for biodiesel production: A review,” Fuel Process. Technol., vol. 90, no. 6, pp. 770–777, 2009.
    [17] A. K. Dalai, T. Issariyakul, and C. Baroi, “Biodiesel Production Using Homogeneous and Heterogeneous Catalysts: A Review,” in Catalysis for Alternative Energy Generation, L. Guczi and A. Erdôhelyi, Eds. New York, NY: Springer New York, 2012, pp. 237–262.
    [18] X. Liu, H. He, Y. Wang, and S. Zhu, “Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst,” Catal. Commun., vol. 8, no. 7, pp. 1107–1111, 2007.
    [19] M. L. Granados, M. D. Z. Poves, D. M. Alonso, R. Mariscal, F. C. Galisteo, R. Moreno-Tost, J. Santamaría, and J. L. G. Fierro, “Biodiesel from sunflower oil by using activated calcium oxide,” Appl. Catal. B Environ., vol. 73, no. 3, pp. 317–326, 2007.
    [20] M. Manríquez-Ramírez, R. Gómez, J. G. Hernández-Cortez, A. Zúñiga-Moreno, C. M. Reza-San Germán, and S. O. Flores-Valle, “Advances in the transesterification of triglycerides to biodiesel using MgO-NaOH, MgO-KOH and MgO-CeO2 as solid basic catalysts,” Catal. Today, vol. 212, pp. 23–30, 2013.
    [21] X. Zhao, L. Wei, S. Cheng, and J. Julson, “Review of Heterogeneous Catalysts for Catalytically Upgrading Vegetable Oils into Hydrocarbon Biofuels,” Catalysts, vol. 7, no. 3, p. 83, Mar. 2017.
    [22] M. Zabeti, W. M. A. W. Daud, and M. K. Aroua, “Biodiesel production using alumina-supported calcium oxide: An optimization study,” Fuel Process. Technol., vol. 91, no. 2, pp. 243–248, 2010.
    [23] W. Xie and H. Li, “Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil,” J. Mol. Catal. A Chem., vol. 255, no. 1–2, pp. 1–9, 2006.
    [24] I. Lukić, J. Krstić, D. Jovanović, and D. Skala, “Alumina/silica supported K2CO3 as a catalyst for biodiesel synthesis from sunflower oil,” Bioresour. Technol., vol. 100, no. 20, pp. 4690–4696, 2009.
    [25] G. Y. Chen, R. Shan, J. F. Shi, and B. B. Yan, “Transesterification of palm oil to biodiesel using rice husk ash-based catalysts,” Fuel Processing Technology, vol. 133. pp. 8–13, 2015.
    [26] S. Koutsopoulos, “Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods,” J. Biomed. Mater. Res., vol. 62, no. 4, pp. 600–612, 2002.
    [27] M. H. Uddin, T. Matsumoto, M. Okazaki, A. Nakahira, and T. Sohmura, “Biomimetic Fabrication of Apatite Related Biomaterials,” in Biomimetics Learning from Nature, A. Mukherjee, Ed. Rijeka: InTech, 2010.
    [28] J. Zeglinski, M. Nolan, M. Bredol, A. Schatte, and S. A. M. Tofail, “Unravelling the specific site preference in doping of calcium hydroxyapatite with strontium from ab initio investigations and Rietveld analyses,” Phys. Chem. Chem. Phys., vol. 14, no. 10, p. 3435, Feb. 2012.
    [29] J. Terra, E. R. Dourado, J.-G. Eon, D. E. Ellis, G. Gonzalez, and A. M. Rossi, “The structure of strontium-doped hydroxyapatite: an experimental and theoretical study.,” Phys. Chem. Chem. Phys., vol. 11, no. 3, pp. 568–577, 2009.
    [30] T. Suzuki, T. Hatsushika, and Y. Hayakawa, “Synthetic hydroxyapatites employed as inorganic cation-exchangers,” J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol. 77, no. 5, p. 1059, Jan. 1981.
    [31] T. Suzuki, T. Hatsushika, and M. Miyake, “Synthetic hydroxyapatites as inorganic cation exchangers. Part 2,” J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol. 78, no. 12, p. 3605, Jan. 1982.
    [32] Y. Xu, F. W. Schwartr, and S. J. Traina, “Sorption of Zn2+ and Cd2+ on Hydroxyapatite Surfaces,” Environ. Sci. Technol, vol. 28, pp. 1472–1480, 1994.
    [33] W. Janusz and E. Skwarek, “Study of sorption processes of strontium on the synthetic hydroxyapatite,” Adsorption, vol. 22, no. 4–6, pp. 697–706, 2016.
    [34] X. Jiang and J. Zhang, “Iron Catalysis for Room-Temperature Aerobic Oxidation of Alcohols to Carboxylic Acids,” J. Am. Chem. Soc., pp. 8344–8347, 2016.
    [35] K. Mori, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, “Hydroxyapatite-Supported Palladium Nanoclusters : A Highly Active Heterogeneous Catalyst for Selective Oxidation of Alcohols by Use of Molecular Oxygen,” J. Am. Chem. Soc., no. m, pp. 10657–10666, 2004.
    [36] M. Umar and H. A. Aziz, “Photocatalytic Degradation of Organic Pollutants in Water,” in Organic Pollutants - Monitoring, Risk and Treatment, M. N. Rashed, Ed. Rijeka: InTech, 2013.
    [37] M. P. Reddy, A. Venugopal, and M. Ã. Subrahmanyam, “Hydroxyapatite-supported Ag – TiO 2 as Escherichia coli disinfection photocatalyst,” Water Res., vol. 41, no. 60305, pp. 379–386, 2007.
    [38] G. Chen, R. Shan, J. Shi, C. Liu, and B. Yan, “Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts,” Energy Convers. Manag., vol. 98, pp. 463–469, 2015.
    [39] E. C. Moreno, T. M. Gregory, and W. E. Brown, “Preparation and Solubility of Hydroxyapatite,” J. Res. Natl. Bur. Stand. - A. Phys. Chem., vol. 72, no. 6, pp. 773–782, 1968.
    [40] V. P. Orlovskii, V. S. Komlev, and S. M. Barinov, “Hydroxyapatite and Hydroxyapatite-Based Ceramics,” Inorg. Mater., vol. 38, no. 10, pp. 973–984, 2002.
    [41] D.-M. Liu, T. Troczynski, and W. J. Tseng, “Water-based sol–gel synthesis of hydroxyapatite: process development,” Biomaterials, vol. 22, no. 13, pp. 1721–1730, Jul. 2001.
    [42] T. T. T. Pham, T. P. Nguyen, T. N. Pham, T. P. Vu, D. L. Tran, H. Thai, and T. M. T. Dinh, “Impact of physical and chemical parameters on the hydroxyapatite nanopowder synthesized by chemical precipitation method,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 4, no. 3, p. 35014, Jul. 2013.
    [43] M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, and A. Jamshidi, “Synthesis methods for nanosized hydroxyapatite with diverse structures,” Acta Biomater., vol. 9, no. 8, pp. 7591–7621, Aug. 2013.
    [44] J. S. Earl, D. J. Wood, and S. J. Milne, “Hydrothermal synthesis of hydroxyapatite,” J. Phys. Conf. Ser., vol. 26, pp. 268–271, Feb. 2006.
    [45] M. Akram, R. Ahmed, I. Shakir, W. A. W. Ibrahim, and R. Hussain, “Extracting hydroxyapatite and its precursors from natural resources,” J. Mater. Sci., vol. 49, no. 4, pp. 1461–1475, Feb. 2014.
    [46] A. Conway, “Global egg consumption to rise worldwide through 2024 | WATTAgNet,” WATTAgNet, 2015. [Online]. Available: http://www.wattagnet.com/articles/25047-global-egg-consumption-to-rise-worldwide-through-2024. [Accessed: 30-Jun-2017].
    [47] “Morphological Diversity in Nanohydroxyapatite Synthesized from Waste Egg Shell : Verification and Optimization of Various Synthesis Parameters,” Int. J. Sci. Technoledge, pp. 2321–919, 2014.
    [48] X. Meng and D. Deng, “Trash to Treasure: Waste Eggshells Used as Reactor and Template for Synthesis of Co9S8 Nanorod Arrays on Carbon Fibers for Energy Storage,” Chem. Mater., vol. 28, no. 11, pp. 3897–3904, 2016.
    [49] L. T. Thanh, K. Okitsu, L. Van Boi, and Y. Maeda, “Catalytic Technologies for Biodiesel Fuel Production and Utilization of Glycerol: A Review,” Catalysts, vol. 2, no. 4, pp. 191–222, 2012.
    [50] A. Mohammadshirazi, A. Akram, S. Rafiee, and E. Bagheri Kalhor, “Energy and cost analyses of biodiesel production from waste cooking oil,” Renew. Sustain. Energy Rev., vol. 33, pp. 44–49, May 2014.
    [51] G. Gelbard, O. Brès, R. M. Vargas, F. Vielfaure, and U. F. Schuchardt, “1H nuclear magnetic resonance determination of the yield of the transesterification of rapeseed oil with methanol,” J. Am. Oil Chem. Soc., vol. 72, no. 10, pp. 1239–1241, Oct. 1995.
    [52] R. Ramli, A. Z. O. Arawi, M. M. Mahat, A. F. Mohd., and M. F. Z. R. Yahya, “Effect of silver (Ag) substitution nano-hydroxyapatite synthesis by microwave processing,” in 2011 International Conference on Business, Engineering and Industrial Applications, 2011, pp. 180–183.
    [53] H. B. Lu, C. T. Campbell, D. J. Graham, and B. D. Ratner, “Surface Characterization of Hydroxyapatite and Related Calcium Phosphates by XPS and TOF-SIMS,” Anal. Chem., vol. 72, no. 13, pp. 2886–2894, 2000.
    [54] A. Zanotto, M. L. Saladino, D. Chillura Martino, and E. Caponetti, “Influence of Temperature on Calcium Hydroxyapatite Nanopowders,” Adv. Nanoparticles, vol. 1, pp. 21–28, 2012.
    [55] M. Bilton, S. J. Milne, and A. P. Brown, “Comparison of Hydrothermal and Sol-Gel Synthesis of Nano-Particulate Hydroxyapatite by Characterisation at the Bulk and Particle Level,” Open J. Inorg. Non-metallic Mater., vol. 2, pp. 1–10, 2012.
    [56] Y. Li, D. Wang, and S. Lim, “Fabrication and Applications of Metal-Ion-Doped Hydroxyapatite Nanoparticles,” JOJ Mater. Sci., vol. 1, no. 2, 2017.
    [57] “ASTM D6751-15ce1 Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels.” ASTM International, West Conshohocken, PA, 2015.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE