簡易檢索 / 詳目顯示

研究生: 林永發
Lin, Yung-Fa
論文名稱: 電漿熔射鋯基高熵合金塗層之顆粒沖蝕磨耗特性檢討
Particle Erosion Characteristics of a Plasma-Sprayed Zr-Based High-Entropy Alloy
指導教授: 呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 74
中文關鍵詞: 鍵結強度顆粒沖蝕磨耗電漿熔射鋯基高熵合金
外文關鍵詞: particle erosion, bonding strength, plasma sprayed, Zr-based high-entropy alloy
相關次數: 點閱:203下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   電漿熔射法噴覆之鋯基高熵合金塗層具有相當快速的凝固速率,實驗結果顯示熔射塗層無法獲得完全非晶質化組織,其非晶率約達80%左右。由於熔射鋯基高熵合金塗層特性,例如微觀組織、凝固缺陷以及沖蝕磨耗阻抗方面的研究數據非常不足,因此本研究針對塗層非晶度進行定量性分析,此外鍵結強度、熔射組織缺陷與沖蝕磨耗特性之間關係也進行有系統的調查。
    上述本實驗之電漿熔射噴塗之非晶化率達80%左右,根據解析可知晶質化相主要為ZrO2及Zr(Cr0.25Fe0.75)2結晶相。此外由SEM/BEI證據顯示熔射塗層有相當含量的凝固缺陷,而且隨塗層厚度增加有增加的趨勢。從沖蝕磨耗實驗結果中可知塗層厚度增加將導致磨耗率增大,此現象與熔射缺陷率增加關係密切,特別是在高角度沖蝕時因熔射凝固缺陷效應明顯,材料磨耗行為主要為熔射裂紋主導之脆性破壞磨耗機制。但低角度時熔射凝固缺陷之效應減小,因此沖蝕磨耗阻抗明顯優於高角度試料。

      We applied plasma-sprayed technique of high cooling rate to obtain the coating with the property of the quite quick coagulation speed. Experimental results showed that we can’t get fully amorphous coating, the coating layer contains around 80% fraction of amorphous. Because of insufficient data for the microstructure, coagulation defects and particle erosion resistance of the Zr-based high entropy alloy coating, this study was to quantitate the non-crystallinity rate of the coating layer. Moreover, the correlation between bonding strength, microstructural defects and particle erosion characteristic of the coating was also investigated.
    Although the coating layer contains around 80% fraction of amorphous, there still exists two crystalline phases, ZrO2 and Zr(Cr0.25Fe0.75)2, according to the XRD. In addition, SEM/BEI result the coating with quite amount of the coagulation defects arising with increasing coating thickness. The result of particle erosion experiment indicated that the increase in the coating thickness. This phenomenon is closely related to the increasing in spraying defects content of the coating, especially at high angle erosion. The material erosion behavior is the mainly wear mechanism of brittle cracks. At the low angle erosion, the coagulation defect effect reduced, therefore the particle erosion resistance obviously surpasses the high angle erosion sample.

    總目錄 中文摘要………………………………………………………………..Ⅰ 英文摘要………………………………………………………………..Ⅱ 總目錄…………………………………………………………………..Ⅲ 表目錄…………………………………………………………………..Ⅳ 圖目錄…………………………………………………………………..Ⅴ 第一章 前言……………………………………………………………1 第二章 文獻回顧………………………………………………………3 2.1 高熵合金的發展………………………………………………...3 2.2 高熵合金之定義及特性……………………………………….10 2.3 電漿熔射技術及凝固速率…………………………………….15 2.4 鍵結強度及顆粒沖蝕磨耗之相關研究……………………….18 第三章 實驗方法……………………………………………………..34 3.1 粉末與塗層試片製備………………………………………….34 3.2 微觀組織分析………………………………………………….35 3.3 沖蝕磨耗試驗………………………………………………….37 第四章 實驗結果……………………………………………………..42 4.1 鋯基高熵合金塗層之微觀組織特徵………………………….42 4.2 鋯基高熵合金塗層之鍵結強度檢討………………………….43 4.3 模具鋼及鋯基高熵合金塗層之沖蝕磨耗特性……………….44 4.3.1 沖蝕磨耗曲線之檢討………………………………………44 4.3.2 SKD61之沖蝕特性…………………………………………45 4.3.3 鋯基高熵合金塗層之沖蝕特性……………………………45 第五章 討論…………………………………………………………..61 5.1 厚度對結晶度、缺陷率及鍵結強度的關係………………….61 5.2 厚度對結晶度及沖蝕磨耗率的關係………………………….63 5.3 鋯基高熵合金塗層之沖蝕磨耗探討………………………….63 5.4 建議方案……………………………………………………….65 第六章 結論…………………………………………………………..67 第七章 參考文獻…...……………………………………………………..69

    1. 黃國雄, 「等莫耳比多元合金系統之研究」,國立清華大學材料科學工程研究所碩士論文,1996。
    2. 賴高廷, 「高亂度合金微結構及性質探討」,國立清華大學材料科學工程研究所碩士論文,1998。
    3. 許雲翔, 「以FCC及BCC元素為劃分配製等莫耳比多元合金系統之研究」,國立清華大學材料科學工程研究所碩士論文,2000。
    4. A. Inoue, Bulk Amorphous Alloys, Vol 2, Trans. Tech. Pub., Zurich, 1999, p. 28.
    5. S. K. Chen, “Current Status of Investigation in Metallic Glasses”, Mining and Metallurgy, Vol1.43, No2, pp. 114-121.
    6. 吳學陞, 「新興材料-塊狀非晶質金屬材料」,工業材料149期,pp. 154-164。
    7. 戴道生、韓汝琪 等編著, 「非晶態物理」,高等學校教學用書,電子業出版社,China. 1984.11。
    8. J. Kramer, Z. Phys., Vol. 106, 1937, p. 639.
    9. J. Kramer, Annln Phys., Vol. 37, 1934, p. 19.
    10. A. Bremer, D. E. Couch and E. K. Williams, J. Res. Natn. Bur. Stand., Vol. 44, 1950, p. 109.
    11. P. Duwes, Trans. Am. Soc. Metals, Vol. 60, 1967, p. 607.
    12. H. W. Kui, A. L. Greer and D. Turnbull, “Formation of Bulk Metallic- Glass by Fluxing”, Applied Physics Letters, Vol. 45, No. 6, 1984, pp. 615-616.
    13. A. Inoue, K. Kita, T. Masumoto and K. Ohtera, “New Amorphous- Alloys with Good Ductility in Al-Ce-NB, Al-Ce-Fe, Al-Ce-Co, Al-Ce-Ni, Al-Ce- Cu Systems”, Japanese Journal of Applied Physics Part 2-Letters, Vol. 27, No. 10,1998, pp. 1796-1799.
    14. A. Inoue, K. Kita, T. Masumoto and T. Zhang, “An Amorphous La-55-Al- 25-Ni-20 Alloy Prepared by Water Quenching”, Materials Transactions JIM, Vol. 30, No. 9, 1989, pp. 722-725.
    15. A. Inoue, T. Zhang and T. Masumoto, “Zr-Al-Ni Amorphous Alloys with High-Transition Temperature and Significant Supercooled Liquid Region”, Materials Transactions JIM, Vol. 31, No. 3, 1990, pp. 177-183.
    16. A. Inoue and T. Masumoto, U.S. Patent No. 5032196, Japanese Patent 07-122120.
    17. A. Inoue and J. S. Gook, “Multi-component Fe-Based Glassy Alloys with Wide Supercooled Liquid Region Before Crystallization”, Materials Transactions JIM, Vol. 36, No. 10, 1995, pp. 1282-1285.
    18. A. Inoue, N. Nishiyama and T. Matsuda, “Preparation of Bulk Glassy Pd40Ni10Cu30P20 Alloy of 40 mm in Diameter by Water Quenching”, Materials Transactions JIM, Vol. 37, No. 2, 1996, pp. 181-184.
    19. A. Peker and W. L. Johnson, “A Highly Processable Metallic-Glass- Zr41.2Ti13.8Cu12.5Ni10.0Be22.5”, Applied Physics Letters, Vol. 63, No. 17, 1993, pp. 2342-2344.
    20. A. Inoue, T. Zhang, K. Ohba and T. Shibata, “Continuous-Cooling- Transformation (CCT) Curves for Zr-Al-Ni-Cu Supercooled Liquids to Amorphous or Crystalline Phase”, Materials Transactions JIM, Vol. 36, No. 7, 1995, pp. 876-878.
    21. Y. He, T. D. Shen and R. B. Schwarz, “Bulk Amorphous Metallic Alloys Synthesis by Fluxing Techniques and Properties”, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, Vol. 29, No. 7, 1998, pp. 1795-1804.
    22. T. Zhang and A. Inoue, “Thermal and Mechanical-Properties of Ti-Ni-Cu- Sn Amorphous-Alloys with a Wide Supercooled Liquid Region Before Crystallization”, Materials Transactions JIM, Vol. 39, No. 10, 1998, pp. 1001-1006.
    23. A. Inoue and T. Zhang, Materials Transactions JIM, Vol. 40, 1999, p. 301.
    24. A. Inoue, T. Zhang and A. Takeuchi, “Bulk Amorphous-Alloys with High Mechanical Strength and Good Soft-Magnetic Properties in Fe-TM-B (TM=Ⅳ-Ⅷ Group Transition-Metal) System”, Applied Physics Letters, Vol. 71, No. 4, 1997, pp. 464-466.
    25. A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, “Mg-Cu-Y Bulk Amorphous-Alloys with High-Tensile Strength Produced by a High-Pressure Die-Casting Method”, Materials Transactions JIM, Vol. 33, No. 10, 1992, pp. 937-945.
    26. A. Inoue, T. Nakamura, T. Sugita, T. Zhang and T. Masumoto, “Bulky La-Al-TM Amorphous-Alloys with High-Tensile Strength Produced by a High-Pressure Die-Casting Method”, Materials Transactions JIM, Vol. 34, No. 4, 1993, pp. 351-358.
    27. A. Inoue and T. Zhang, ”Fabrication of Bulk Glassy Zr55Al10Ni5Cu30 Alloy of 30 mm in Diameter by a Suction Casting Method”, Materials Transactions JIM, Vol. 37, No. 2, 1996, pp. 185-187.
    28. A. Inoue, N. Nishiyama and H. Kimura, “Preparation and Thermal Stability of Bulk Amorphous Pd40Cu30Ni10P20 Alloy Cylinder of 72 mm in Diameter”, Materials Transactions JIM, Vol. 38, No. 2, 1997, pp. 179-183.
    29. A. Inoue, “Bulk Amorphous Alloys”, Vol. 2, Trans. Tech. Publications, Zurich, 1999, p. 28.
    30. A. Inoue and N. Nishiyama, “Extremely Low Critical Cooling Rates of New Pd-Cu-P Base Amorphous-Alloys”, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, Vol. 226, 1997, pp. 401-405.
    31. Z. Xia, X. Zhang and J. Song, “Erosion-Resistance of Plasma Sprayed Coatings”, Journal of Materials Engineering and Performance, Vol. 8, 1999, pp.716-718.
    32. 鄭振東 編譯,「非晶質金屬漫談」,建宏出版社,1990。
    33. R Suryanarayanan et al., Plasma Spraying: Theory and Application, 1993.
    34. D. F. Wang, Z. Y. Mao, “A Study for Erosion of Si3N4 Ceramics by Impact of Solid Particles”, Wear, Vol. 199, 1996, pp.283-286.
    35. 楊永欽, 「殘留應力對電漿熔射氫氧基磷灰石塗層與鈦鋁釩合金基材間結合強度之影響研究」, 國立成功大學材料科學及工程研究所博士論文,2003。
    36. D. E. Polk and B. C. Giessen, In Rapid Solidification Technology Source Book, ASM, Metals Park, Ohio, 1983, pp. 213-247.
    37. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, Chapman and Hill, New York, USA, 1991, pp. 186-197.
    38. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, Chapman and Hill, New York, USA, 1991, pp. 287-291.
    39. D. R. Uhlmann, “A Kinetic Treatment of Glass Formation”, Journal of Non-crystalline Solids, Vol. 7, 1972, pp. 337-348.
    40. A. Inoue, T. Zhang and T. Masumoto, “Glass-Forming Ability of Alloys”, Journal of Non-crystalline Solids, Vol. 156, 1993, pp. 473-480.
    41. A. Inoue and T. Zhang, Materials Transactions JIM, Vol. 40, 1999, p. 301.
    42. H. Wang, R. Luck and B. Predel, “Thermodynamic Calculations in Quaternary Transition-Metal Systems”, Journal of Alloys and Compounds, Vol. 191, No. 1, 1993, pp. 43-49.
    43. A. Greer, “Confusion by Design”, Nature, Vol. 366, No. 25, 1993, pp. 303-304.
    44. Z. P. Lu, H. Tan, Y. Li and S. C. Ng, Scripta Mater., Vol. 42, 2000, p 667.
    45. Z. P. Lu, Y. Li and S. C. Ng, Journal of Non-crystalline Solids, Vol. 270, 2000, p. 103.
    46. Z. P. Lu and C. T. Liu, “A New Glass-Forming Ability Criterion for Bulk Metallic Glasses”, Acta Materialia, Vol. 50, 2002, pp. 3501-3512.
    47. L. Battezzati, “Thermodynamics of Under-cooled Melts and Metastable Phase-Formation”, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, Vol. 178, No. 1-2, 1994, pp. 43-49.
    48. R. Luck, U. Gerling and B. Predel, “On the Interpolation Algorithms for Thermodynamic Functions of Mixtures in Multi-component Systems from Binary Boundary Systems”, Zeitschrift fur Metallkunde, Vol. 77, No. 7, 1986, pp. 442-448.
    49. M. Hillert, “Empirical-Methods of Predicting and Representing Thermodynamic Properties of Ternary Solution Phase”, Calphad Computer Coupling of Phase Diagrams and Thermo-chemistry, Vol. 4, No. 1, 1980, pp. 1-12.
    50. R. Q. Li, “The Application of R Function to New Asymmetric Model and Toop Model”, Calphad Computer Coupling of Phase Diagrams and Thermo-chemistry, Vol. 13, No. 1, 1989, pp. 67-70.
    51. L. Kaufman and H. Berstein, Computer Calculation of Phase Diagrams, Academic Press, New York, 1970.
    52. I. Finnie, “Erosion of Surfaces by Solid Particles”, Wear, Vol. 3, 1960, pp. 87-95.
    53. J. P. A. Bitter, “A Study of Erosion Phenomena Part Ⅰ”, Wear, Vol. 6, 1963, pp. 5-12.
    54. Y. I. Oka, H. Ohnogi, T. Hosokawa and M. Matsumura, “The Impact Angle Dependence of Erosion Damage Caused by Solid Particle Impact”, Wear, Vol. 203-204, 1977, pp. 573-579.
    55. G. P. Tilly, “Erosion Caused by Impact of Solid Particles”, Treatise on Materials Science and Technology, 13th ED., D. Scott, Academic Press, New York, 1979, pp. 287-319.
    56. I. Finnie, J. Wolak and Y. Kabil, “Erosion of Metals by Solid Particles”, Journal of Materials, Vol. 2, 1967, pp.682-700.
    57. K. G. Budinski, “Surface Engineering for Wear Resistance”, Prentice-Hall, Englewood Cliffs, New Jersey, 1988, pp. 209-287.
    58. K. H. Zum Gahr, “Microstructure and Wear of Materials”, Elsevier, Amsterdam, 1987, 1st ED., pp. 531-553.
    59. J. H. Neilson and A. Gilchrist, “Erosion by a Stream of Solid Particle”, Wear, Vol. 11, 1968, pp.111-122.
    60. A. V. Levy, “The Platelet Mechanism of Erosion of Ductile Metals”, Wear, Vol. 108, 1986, pp. 1-21.
    61. H. Reshetnyak and J. Kuybarsepp, “Mechanical Properties of Hard Metals and Their Erosive Wear Resistance”, Wear, Vol. 177, 1994, pp. 185-193.
    62. M. Liebhard and A. V. Levy, “The Effect of Erodent Particle Characteristics on the Erosion of Metals”, Wear, Vol. 151, 1991, pp. 381-390.
    63. G. Sundararajan, “The Solid Particle Erosion of Metallic materials: The Rationalization of the Influence of Material Variables”, Wear, Vol. 186-187, 1995, pp. 129-138.
    64. S. Lathabai, M.Ottmuller and I. Fernsandez, “Solid Particle Erosion Behavior of Thermal Sprayed Ceramic, Metallic and Polymer Coatings”, Wear, Vol. 221, 1998, pp. 93-108.
    65. D. Chen, M. Sarumi, S. T. S. Al-Hassani, S. Gan and Z. Yin, “A Model for Erosion at Normal Impact”, Wear, Vol. 205, 1997, pp. 32-39.
    66. W. F. Adler, “Analytical Modeling of Multiple Particle Impacts on Brittle Materials”, Wear, Vol. 37, 1976, pp. 353-364.
    67. R. G. Wellman and C. Allen, “The Effect of Angle of Impact and Material Properties on the Erosion Rates of Ceramics”, Wear, Vol. 186-187, 1995, pp. 117-125.
    68. A. Levy, M. Aghazadeh and G. Hickey, “The Effect of Test Variables on the Platelet Mechanism of Erosion”, Wear, Vol. 108, 1986, pp. 23-41.
    69. R. Bellman, Jr. and A. Levy, “Erosion Mechanism in Ductile Metals”, Wear, Vol. 70, 1981, pp. 1-27.
    70. D. E. Kim and N. P. Suh, “On Microscopic Mechanism of Friction and Wear”, Wear of Materials, ASME, 1991, pp. 475-480.
    71. R. E. Winter and I. M. Hutchings, “Study of Erosion by Solid Particles”, Wear, Vol. 34, 1975, pp. 141-148.
    72. Y. I. Oka, M. Matsumura and T. Kawabata, “Relationship Between Surface Hardness and Erosion Damage Caused by Solid Particle Impact”, Wear, Vol. 162-164, 1993, pp. 688-695.
    73. D. F. Wang and Z. Y. Mao, “A Study for Erosion of Si3N4 Ceramics by Impact of Solid Particles”, Wear, Vol. 248, 2001, pp. 201-210.
    74. T. N. Rouns and K. B. Rundman, “On the Effect of Molybdenum on the Kinetics of Tempering Ductile Cast Irons”, AFS Trans, 1983, pp. 25-36.
    75. K. Sonoya (I.-Harima Heavy Indust. Co., Ltd.), C. J. Li, F. H. Li, “Relationships Between Microstructure, Mechanical Properties of Plasma-Sprayed Ni-50Cr Coatings and Spray parameters”, Japan Welding Society, Vol. 19, 2001, pp. 27-36.
    76. J. H. Clare and D. E. Crawmer, “Thermal Spray Coatings”, Metal Handbook, Ninth Edition, American Society for Metals, USA, Vol. 5, 1984, pp. 361-374.
    77. F. N. Longo, “Thermal Spraying Practice, Theory and Application”, American Welding Society Inc., Florida, Vol. 1, 1984.
    78. H. S. Ingham, Flame Spray Handbook, Metco nc., New York, Vol. 3, 1965, p. 17.
    79. O. Vingsbo, “Wear and Wear Mechanisms”, Wear of Materials, ASME, 1979, pp. 620-635.

    下載圖示 校內:立即公開
    校外:2004-06-29公開
    QR CODE