簡易檢索 / 詳目顯示

研究生: 丁品仲
Ting, Pin-Chung
論文名稱: 電漿增強式原子層沉積系統製備氧化鎂鋅光檢測器之研究
Investigation of MgZnO photodetectors using plasma-enhanced atomic layer deposition system
指導教授: 李欣縈
Lin, Hsin-Ying
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 75
中文關鍵詞: 電漿增強式原子層沉積系統二氧化矽奈米球金屬-半導體-金屬紫外光光檢測器氧化鎂鋅抗反射層
外文關鍵詞: Plasma-enhaced atomic layer deposition system, Metal-semiconductor-metal ultraviolet photodetectors, MgxZn1-xO, Anti-refraction layer, SiO2 nanospheres
相關次數: 點閱:95下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,利用電漿增強式原子層沉積系統製備鎂摻雜之氧化鋅薄膜,其中主要是改變以往原子層沉積系統以堆疊方式摻雜元素,改以同時通入二乙基鋅及二茂鎂前驅物方式,使鎂摻雜元素均勻分布於氧化鋅薄膜中,以提升薄膜品質。其中藉由控制不同二茂鎂前驅物通入量,以改變氧化鎂鋅薄膜中的鎂摻雜量,並將其應用於製作金屬-半導體-金屬紫外光光檢測器。於論文中,亦利用二氧化矽奈米球塗佈於光檢測器上,作為抗反射層,可增加入射光量至元件中,以提升光檢測器元件效率。
    本論文將分析不同鎂含量之氧化鎂鋅薄膜對於元件之特性。以分光光譜儀量測穿透率,並換算各薄膜之光學能隙為3.56 eV至3.71 eV,而鎂含量為0.10至0.19。由各元件之暗電流的結果指出,施予偏壓5 V時,隨著鎂含量的提升,暗電流由1.37 nA下降至297.13 pA。光響度之峰值也由348 nm調變至334 nm。此外,透過加入單層之二氧化矽奈米球作為抗反射層於表面後,各元件之響應度有明顯之提升。鎂含量為0.10之元件紫外光-可見光拒斥比也從無抗反射層之8.27×103提升至8.73×103,等效雜訊功率由原本的1.01×10-14 W下降至8.62×10-15 W,元件檢測度則由3.11×1013 cmHz1/2W−1上升至 3.65×1013 cmHz1/2W−1。

    In this study, the high quality MgZnO was deposited on the sapphire substrate by using plasma-enhanced atomic layer deposition (PE-ALD) system with co-doping method. At the MgZnO deposition, the Mg precursor and the Zn precursor were injected into the chamber at the same time which can make Mg dope uniformly at the ZnO films. The SiO2 nanospheres were coated on the device to be the anti-reflection layer (AR layer) to enhance the performance of MgZnO-based photodetector. Therefore, there were more photons be absorbed at the active layer. At the bias voltage of 5V, the dark current of the MgxZn1-xO metal-semiconductor-metal photodetector (MSM-PD) substantially decreased from 1.37 nA to 297.13 pA and the peak position of photoresponsivity was also shifted from 348 nm to 334 nm with an increase in Mg content of 0.10 to 0.19. The UV-visible rejection ratio of the Mg0.1Zn0.9O MSM-PDs without and with AR layer was 8.27×103 and 8.73×103,respectively. The noise equivalent power (NEP) and the detectivity (D*) of the device with AR layer was increased to 8.62×10-15 W and 3.65×1013 cmHz1/2¬W-1 which compare with the device without AR layer.

    摘要 I 目錄 X 表目錄 XIII 圖目錄 XIV 第一章 序論 1 第二章 實驗原理簡介 5 2.1 原子層沉積系統原理 5 2.2 電漿增強式原子層沉積系統原理 5 2.2.1 氧化鎂鋅薄膜沉積 6 2.3 量測儀器 8 2.3.1 X光繞射分析儀(XRD) 8 2.3.2 分光光譜儀 9 2.3.3 響應度量測系統 9 2.3.4 低頻雜訊量測系統 10 2.4 光檢測器 10 2.4.1 金屬-半導體-金屬紫外光光檢測器工作原理 11 2.4.2 電流-電壓特性曲線 12 2.4.3 光檢測器之響應度 13 2.5 抗反射層 15 2.6 低頻雜訊 16 2.6.1 熱雜訊 16 2.6.2 產生-復合雜訊 17 2.6.3 閃爍雜訊 17 2.6.4 等效雜訊功率與檢測靈敏度 18 第三章 元件製程 28 3.1 氧化鎂鋅薄膜製作 28 3.2 定義氧化鎂鋅主動區 29 3.3 氧化鎂鋅主動區蝕刻 30 3.4 定義金屬指叉狀電極 30 3.5 製作金屬指叉狀電極 31 3.6 奈米球抗反射層製作 32 第四章 元件特性量測及分析 37 4.1 共同摻雜之氧化鎂鋅薄膜特性 37 4.1.1 自我侷限效應 37 4.1.2 薄膜光學特性分析 37 4.1.3 薄膜晶格特性分析 38 4.2 氧化鎂鋅光檢測器特性量測 39 4.2.1 電流-電壓特性比較 40 4.2.2 響應度特性比較 40 4.2.3 低頻雜訊特性 41 4.3 奈米球抗反射層/氧化鎂鋅光檢測器特性比較 42 4.3.1 奈米球自組裝技術 43 4.3.2 電流-電壓特性比較 45 4.3.3 響應度特性比較 45 4.3.4 低頻雜訊特性比較 46 第五章 結論 66 參考文獻 68

    [1] C. T. Lee, T. S. Lin, and H. Y. Lee, “Mechanisms of low noise and high detectivity of p-GaN/i-ZnO/n-ZnO: Al-heterostructured ultraviolet photodetectors,” IEEE Photonics Technol. Lett., vol. 22, pp. 1117-1119, 2010.
    [2] C. H. Chen and C. T. Lee, “Enhancing the performance of ZnO nanorod/p-GaN heterostructured photodetectors using the photoelectrochemical oxidation passivation method,” IEEE Trans. Nanotechnol., vol. 12, pp. 578-582, 2013.
    [3] C. T. Lee and T. S. Lin, “ZnO-based solar blind ultraviolet-C photodetectors using SiZnO absorption layer,” IEEE Photonics Technol. Lett., vol. 27, pp. 864-866, 2015.
    [4] P. W. Nebiker and R. E. Pleisch, "Photoacoustic gas detection for fire warning," Fire Saf. J., vol. 36, no. 2, pp. 173-180, 2001.
    [5] H. Y. Lee, W. H. Tsai, Y. C. Lin, and C. T. Lee, "Performance enhancement of MgZnO ultraviolet photodetectors using ultrathin Al2O3 inserted layer," J. Vac. Sci. Technol. B, vol. 34, no. 5, 2016
    [6] Y. S. Chiu, C. T. Lee, L. R. Lou, S. C. Ho, and C. T. Chuang, "Wide linear sensing sensors using ZnO:Ta extended-gate field-effect-transistors," Sens. Actuator B-Chem., vol. 188, pp. 944-948, 2013.
    [7] P. C. Wu, H. Y. Lee, and C. T. Lee, "Enhanced light emission of double heterostructured MgZnO/ZnO/MgZnO in ultraviolet blind light-emitting diodes deposited by vapor cooling condensation system," Appl. Phys. Lett, vol. 100, no. 13,2012.
    [8] C. T. Lee, Y. S. Chiu, L. R. Lou, S. C. Ho, and C. T. Chuang, “Integrated pH sensors and performance improvement mechanism of ZnO-based ion-sensitive field-effect transistors,” IEEE Sens. J., vol. 14, pp. 490-496, 2014.
    [9] W. Yang, R. D. Vispute, S. Choopun, R. P. Sharma, T. Venkatesan, and H. Shen, “Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn0.66O thin films,” Appl. Phys. Lett., vol. 78, pp. 2787-2789, 2001.
    [10] Z. Zhang, H. von Wenckstern, and M. Grundmann, “Energy-selective multichannel ultraviolet photodiodes based on (Mg,Zn)O,” Appl. Phys. Lett., vol. 103, pp. 171111-1-171111-4, 2013.
    [11] M. M. Fan, K. W. Liu, Z. Z. Zhang, B. H. Li, X. Chen, D. X. Zhao, C. X. Shan, and D. Z. Shen, “High-performance solar-blind ultraviolet photodetector based on mixed-phase ZnMgO thin film,” Appl. Phys. Lett., vol. 105, pp. 011117-1-011117-5, 2014.
    [12] T. Y. Wu et al., "Photoluminescence properties of MgxZn1-xO films grown by molecular beam epitaxy," J. Cryst. Growth, vol. 459, pp. 13-16, 2017.
    [13] X. L. Xu, L. Lu, Y. Wang, and C.S. Shi, “Photoluminescence and structure properties of Zn1−xMgxO films grown by RF magnetron sputtering,” J. Phys.-Condes. Matter, vol. 18, p. 1189, 2006.
    [14] H. Y. Lee, M. Y. Wang, K. J. Chang, and W. J. Lin, “Ultraviolet photodetector based on MgxZn1−xO thin films deposited by radio frequency magnetron sputtering,” IEEE Photonics Technol. Lett., vol. 20, no. 24, p. 2108, 2008.
    [15] J. Y. Li, S. P. Chang, S. J. Chang, H. H. Lin, and M. H. Hsu, "The Effect of the Thickness and Oxygen Ratio Control of Radio- Frequency Magnetron Sputtering on MgZnO Thin-Film Transistors," J. Nanosci. Nanotechnol., vol. 17, no. 3, pp. 2037-2040,2017.
    [16] H. Zhu, C. X. Shan, L. K. Wang, J. Zheng, J. Y. Zhang, B. Yao, and D. Z. Shen, “Metal−oxide−semiconductor-structured MgZnO ultraviolet photodetector with high internal gain,” J. Phys. Chem. C, vol. 114, pp. 7169-7172, 2010.
    [17] C. Y. Zhao, X. H. Wang, J. Y. Zhang, Z. G. Ju, C. X. Shan, B. Yao, D. X. Zhao, D. Z. Shen, and X. W. Fan, “Ultraviolet photodetector fabricated from metal-organic chemical vapor deposited MgZnO,” Thin Solid Films, vol. 519, pp. 1976-1979, 2011.
    [18] H. Y. Lee, Y. C. Lin, M. J. Lee, W. Y. Uen, and K. Sreenivas, "Enhanced Performance of Mg0.1Zn0.9O UV Photodetectors Using Photoelectrochemical Treatment and Silica Nanospheres," J. Nanomater., 2014.
    [19] I. K. Piltaver et al., "Controlling the grain size of polycrystalline TiO2 films grown by atomic layer deposition," Appl. Surf. Sci., vol. 419, pp. 564-572, 2017.
    [20] H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition basics opportunities and challenges,” J. Vac. Sci. Technol. A, vol. 29, pp. 050801-1- 050801-26, 2011.
    [21] S. M. George, “Atomic layer deposition: an overview,” Chem. Rev., vol. 110, pp. 111-131, 2010.
    [22] H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition: basics, opportunities, and challenges,” J. Vac. Sci. Technol. A, vol. 29, pp. 050801-1- 050801-26, 2011.
    [23] Y. Kim, J. Koo, J. W. Han, S. Choi, H. Jeon, and C. G. Park, “Characteristics of ZrO2 gate dielectric deposited using Zr t–butoxide and Zr(NEt2)4 precursors by plasma enhanced atomic layer deposition method,” J. Appl. Phys., vol. 92, pp. 5443-5447, 2002.
    [24] J. S. Park, H. S. Park, and S. W. Kang, “Plasma-enhanced atomic layer deposition of Ta-N thin films,” J. Electrochem. Soc., vol. 149, pp. C28- C32, 2002.
    [25] J. Y. Kim, S. Seo, D. Y. Kim, H. Jeon, and Y. Kim, “Remote plasma enhanced atomic layer deposition of TiN thin films using metalorganic precursor,” J. Vac. Sci. Technol. A, vol. 22, pp. 8-12, 2004.
    [26] K. E. Elers, J. Winkler, K. Weeks, and S. Marcus, “TiCl4 as a precursor in the TiN deposition by ALD and PEALD,” J. Electrochem. Soc., vol. 152, pp. G589-G593, 2005.
    [27] S. B. S. Heil, E. Langereis, A. Kemmeren, F. Roozeboom, M. C. M. van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition of TiN monitored by in situ spectroscopic ellipsometry,” J. Vac. Sci. Technol. A, vol. 23, pp. L5-L8, 2005.
    [28] S. B. S. Heil, E. Langereis, F. Roozeboom, M. C. M. Van de Sanden, and W. M. M. Kessels, “Low-temperature deposition of TiN by plasma-assisted atomic layer deposition,” J. Electrochem. Soc., vol. 153, pp. G956-G965, 2006.
    [29] N. Leick, R. O. F. Verkuijlen, E. Langereis, S. Rushworth, F. Roozeboom, M. C. M. van de Sanden, and W. M. M. Kessels, “Atomic layer deposition of Ru from CpRu(CO)2Et using O2 gas and O2 plasma,” J. Vac. Sci. Technol. A, vol. 29, pp. 021016-1-021016-7, 2011.
    [30] M. A. Thomas and J. B. Cui, “Highly tunable electrical properties in undoped ZnO grown by plasma enhanced thermal-atomic layer deposition,” ACS Appl. Mater. Interfaces, vol. 4, pp. 3122-3128, 2012.
    [31] J. G. Song, J. Park, J. Yoon, H. Woo, K. Ko, T. Lee, S. H. Hwang, J. M. Myoung, K. Kim, Y. Jang, K. Kim, and H. Kim, “Plasma enhanced atomic layer deposition of magnesium oxide as a passivation layer for enhanced photoluminescence of ZnO nanowires,” J. Lumin., vol. 145, pp. 307-311, 2014.
    [32] Z. Alaie, S. Mohammad Nejad, and M. H. Yousefi, “Recent advances in ultraviolet photodetectors,” Mater. Sci. Semicond. Process, vol. 29, pp. 16-55, 2015.
    [33] G.W. Neudeck, “The pn junction diode,” Addison-Wesley, Reading MA, p. 135, 1989.
    [34] S. M. Sze, D. J. Coleman, Jr., and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron., vol. 14, pp. 1209-1218, 1971.
    [35] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo, and M. Umeno, “Back-illuminated GaN metal-semiconductor- metal UV photodetector with high internal gain,” Jpn. J. Appl. Phys., vol. 40, pp. L505-L507, 2001.
    [36] J. B. D. Soole and H. Schumacher, “InGaAs metal-semiconductor- metal photodetectors for long wavelength optical communications,” IEEE J. Quant. Electron., vol. 27, pp. 737-752, 1991.
    [37] P. Wang, Z. Song, J. He, X. Guo, Y. Wang, L. Qiu, L. Guo, and Y. Yang, “Effects of internal gain and illumination-induced stored charges in MgZnO metal-semiconductor-metal photodetectors,” IEEE Trans. Electron Devices, vol. 63, pp. 1600-1607, 2016.
    [38] F. N. Hooge, “1/f noise sources,” IEEE Trans. Electron Devices, vol. 41, pp. 1926-1935, 1994.
    [39] X. S. Nguyen, K. Lin, Z. Zhang, B. McSkimming, A. R. Arehart, J. S. Speck, S. A. Ringel, E. A. Fitzgerald, and S. J. Chua, “Correlation of a generation-recombination center with a deep level trap in GaN,” Appl. Phys. Lett., vol. 101, pp. 102101-1-102101-5, 2015.
    [40] H. Y. Lee, M. Y. Wang, K. J. Chang, and W. J. Lin, "Ultraviolet Photodetector Based on MgxZn1-xO Thin Films Deposited by Radio Frequency Magnetron Sputtering," IEEE Photonics Technol. Lett., vol. 20, no. 21-24, pp. 2108-2110, 2008.
    [41] S. K. Han et al., "Growth and characterization of MgxZn1-xO films grown on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy," J. Alloy. Compd., vol. 623, pp. 1-6, 2015.
    [42] Z. Zhang, H. von Wenckstern, and M. Grundmann, “Energy-selective multichannel ultraviolet photodiodes based on (Mg,Zn)O,” Appl. Phys. Lett., vol. 103, pp. 171111-1-171111-4, 2013.
    [43] H. Y. Lee, M. Y. Wang, K. J. Chang, and W. J. Lin, “Ultraviolet photodetector based on MgxZn1-xO thin films deposited by radio frequency magnetron sputtering,” IEEE Photonics Technol. Lett., vol. 20, pp. 2108-2110, 2008.
    [44] C. Y. Zhao, X. H. Wang, J. Y. Zhang, Z. G. Ju, C. X. Shan, B. Yao, D. X. Zhao, D. Z. Shen, and X. W. Fan, “Ultraviolet photodetector fabricated from metal-organic chemical vapor deposited MgZnO,” Thin Solid Films, vol. 519, pp. 1976-1979, 2011.
    [45] Y. C. Lin, H. Y. Lee, and C. T. Lee, "Ultraviolet photodetector based on MgxZn1-xO films using plasma-enhanced atomic layer deposition," J. Vac. Sci. Technol. A, vol. 34, no. 1, 2016.
    [46] H. Y. Lee, Y. C. Lin, M. J. Lee, W. Y. Uen, and K. Sreenivas, “Enhanced performance of Mg0.1Zn0.9O UV photodetectors using photoelectrochemical treatment and silica nanospheres,” J. Nanomater., vol. 2014, pp. 972869-1-972869-6, 2014.

    無法下載圖示 校內:2022-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE