簡易檢索 / 詳目顯示

研究生: 顏毓修
Yen, Yu-Shiu
論文名稱: 實地量測廢氣燃燒塔之處理效率
In-situ measurement of the Destruction Efficiency of NMHC by Flare
指導教授: 吳義林
Wu, Yi-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 63
中文關鍵詞: 廢氣燃燒塔燃燒效率遙控載具繫留氣球
外文關鍵詞: flare, Balloon-borne sampling system, Remote-control helicopter
相關次數: 點閱:80下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 燃燒塔(Flare)是煉油、石化、化學工廠內相當普通的緊急廢氣處置設備,係指廠中一種開放式燃燒裝置。廢氣燃燒塔欲達到98%的效率,排氣的淨熱值、速度與燃燒混合條件,必須配合的相當好,然而在緊急排放情況下,往往很難符合完全燃燒之條件,導致實際破壞效率嚴重降低。本研究主要為利用兩種不同載具系統搭載可攜式氣體監測器及風速計等儀器,進入燃燒塔排放尾氣煙流內進行採樣,並以二氧化碳濃度變化判斷煙流位置,利用量測之CO2、CO、NMHC、H2O、BC 與O2 濃度推估廢氣燃燒塔的破壞效率,並以碳元素及氧元素計算周界空氣稀釋比例,而燃燒塔的破壞效率則以CO2、CO、NMHC 與BC 濃度及混合稀釋比例計算。本研究共進行6 廠次17 根次廢氣燃燒塔效率檢測,其量測結果燃燒效率約介於70%~99%間。

    Emission inventory of non-methane hydrocarbon (NMHC) is important to both the air quality management of ozone and air toxics and the air pollution fee program. Many studies have revealed that flares in refinery and petrochemical plants are the major emission sources among the stationary sources of NMHC. Flares are used as control measures for reducing NMHC emission from refinery and petrochemical processes on routine basis in Taiwan, especially under emergencies. Therefore, they are very unique and there are only limited studies about their control efficiencies. Therefore, the purpose of this study is to evaluate the control efficiencies (CE) of flare for NMHC by field measurements. The CE of flare, which doesn’t have stack for emission, was determined by using balloon-borne sampling system and remote-control helicopter. The plume position was decided by CO2 concentration, and calculated the control efficiencies by CO2、CO、NMHC. The dilution ratio of the ambient –air was decided by both O and C element. The results show the control efficiencies range from 70%~99%.

    第1 章、前言 .............................. 1 1-1、研究背景.......................................1 1-2、研究目的........................................2 1.3、研究架構.......................................2 第2 章、文獻回顧 ........................ 4 2-1、廢氣燃燒塔...................................4 2-2、廢氣燃燒塔處理效率..............................6 2-3、臺灣目前實測結果.........................9 2-4、國內燃燒塔使用概況............................10 第3 章、研究方法 ........................... 12 3-1、遙控載具系統設計..........................12 3-1-1、載具系統設計.......................12 3-1-2、採樣管設計........................12 3-1-3、使用儀器及偵測極限.........................14 3-2、繫留氣球系統設計.............................15 3-3、實地採樣步驟流...................................16 3-3-1、載具操作流程.........................16 3-3-2、煙流位置判定........................17 3-3-3、空氣稀釋影響.....................18 3-3-4、燃燒塔效率計算.......................19 第4 章、結果討論 ....................... 20 4-1、實地量測煙流結果...........................20 4-1.1 A 廠址..................................20 4-1.2 B 廠址..................................24 4-1.3 C 廠址...................................29 4-1.4 D 廠址.................................32 4-1.5 E 廠址..................................38 4-1.6 F 廠址..................................41 4-2、各物種量測結果討論.......................50 4.2-1 二氧化碳.............................50 4.2-2 ㄧ氧化碳、非甲烷碳氫化合物........................50 4.2-3 黑碳.....................................51 4.2-4 氧氣......................................51 4-3、煙流判斷.......................................52 4-4、不同稀釋倍數算法比較..............................53 4-5、燃燒效率與NMHC 破壞率比較...........................54 4-6、影響燃燒塔效率因素..........................56 4-7、與加拿大風洞實驗結果比較..............................56 第5 章 結論與建議 ..................... 59 5-1、結論...................................59 5-2、建議................................................60 參考文獻 .....................................61

    Stone D. K., Lynch S. K., Pandullo R. F., “VOC Destruction controls「Flare”, EPA/452/B-02-001, September 2000
    Guide for Pressure-Relieving and Depressurizing Systems, Refining
    Department, API Recommended Practice 521, Second Edition,
    September 1982.
    Kalcevic, V., “Control Device Evaluation Flares and the Use of
    Emissions as Fuels”, Organic Chemical Manufacturing Volume 4;
    Combustion Control Devices, U.S. Environmental Protection Agency,
    Research Triangle Park, NC, Publication no. EPA-450/3-80-026,
    December 1980, Report 4.
    Reactor Processes in Synthetic Organic Chemical Manufacturing
    Industry-Background Information for Proposed Standards, U.S.
    Environmental Protection Agency, Office of Air Quality Planning and
    Standards, Research Triangle Park, NC, Preliminary Draft, EPA 450/3-
    90-016a, June 1990.
    Siegel K. D., “Degree of Conversion of Flare Gas in Refinery Elevated”,
    PhD Thesis in Engineering Science, Feb, 1980, Chemical Engineering
    Department, University of Karlsruhe, Germany.
    McDaniel M., Flare Efficiency Study, EPA-600/2-83-052, July1983
    Pohl J.H., Payne & J. Lee,“ Evaluation of the Efficiency of Industrial
    Flares「Test result”, EPA-600/2-84-095, May 1984
    Pohl J.H. and N.R. Soelberg, “Evaluation of the Efficiency of Industrial
    Flares「Flare Head Design and Gas Composition”, EPA-600/2-85-106,
    September 1985
    Pohl J.H. and N.R. Soelberg, “Evaluation of the Efficiency of Industrial
    Flares「H2S Gas Mixtures and Pilot Assisted Flares”, EPA-600/2-86-080,
    September 1986
    Walsh P.M., D.K. Moyeda, W.S. Lanier, C.M. Booth, E.E. Folk, J.
    Maxwell, W.K. Whitcraft, R.K. Noble, J.M. Clopton, T. Rogers, C.
    Nicely, R.E. Rosensteel and C.A. Miller,○Flame Stability Limits and
    Hydrocarbon Destruction Efficiencies of Flare Burning Waste Streams
    Containing Hydrogen and Inert Gases”, American Flame Research
    Committee Fall Meeting, November 2002
    Strosher M., Investigations of Flare Gas Emissions in Alberta, Alberta
    Research Council, November 1996
    Kostiuk L.W., M.R. Johnson and R.A. Prybysh, Recent Research on the
    Emission from Continuous Flares, Combustion and Environment Group,
    Department of Mechanical Engineering, University of Alberta, 2000
    Gogolek P.E.G. and A.C.S. Hayden, Efficiency of Flare Flames in
    Turbulent Crosswind, Advanced Combustion Technologies, Natural
    Resource Canada, American Flame Research Committee Spring Meeting,
    May 2002
    Ozumba C.I., and I.C. Okoro, Combustion Efficiency Measurements of
    Flares Operated by an Operating Company, SPE International Conference
    on Health, Safety, and the Environment in Oil and Gas Exploration and
    Production, Stavanger, Norway, June 2000
    Blackwood TR. 2000. An evaluation of flare combustion efficiency using
    open-path Fourier transform infrared technology. J Air Waste Manage
    50(10): 1714-1722.
    Zadakbar O, Vatani A, Karimpour K. 2008. Flare Gas Recovery in Oil
    and Gas Refineries. Oil Gas Sci Technol 63(6): 705-711.
    Blackwood TR. 2000. An evaluation of flare combustion efficiency using
    open-path Fourier transform infrared technology. J Air Waste Manage
    50(10): 1714-1722.
    Haus R, Wilkinson R, Heland J, Schafer K. 1998. Remote sensing of gas
    emissions on natural gas flares. Pure Appl Opt 7(4): 853-862.
    Brzustowski TA. 1976. Flaring in Energy Industry. Prog Energ Combust
    2(3): 129-141.
    Haus R, Wilkinson R, Heland J, Schafer K. 1998. Remote sensing of gas emissions on natural gas flares. Pure Appl Opt 7(4): 853-­‐862.
    吳義林、劉鍇銘、林清和,2008,應用繫留氣球系統量測廢氣燃塔之NMHC防制效率, 中華民國環境工程學會空氣污染控制技術研討會, 97年6月

    下載圖示 校內:2016-08-24公開
    校外:2016-08-24公開
    QR CODE