| 研究生: |
顏毓修 Yen, Yu-Shiu |
|---|---|
| 論文名稱: |
實地量測廢氣燃燒塔之處理效率 In-situ measurement of the Destruction Efficiency of NMHC by Flare |
| 指導教授: |
吳義林
Wu, Yi-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 廢氣燃燒塔 、燃燒效率 、遙控載具 、繫留氣球 |
| 外文關鍵詞: | flare, Balloon-borne sampling system, Remote-control helicopter |
| 相關次數: | 點閱:80 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
燃燒塔(Flare)是煉油、石化、化學工廠內相當普通的緊急廢氣處置設備,係指廠中一種開放式燃燒裝置。廢氣燃燒塔欲達到98%的效率,排氣的淨熱值、速度與燃燒混合條件,必須配合的相當好,然而在緊急排放情況下,往往很難符合完全燃燒之條件,導致實際破壞效率嚴重降低。本研究主要為利用兩種不同載具系統搭載可攜式氣體監測器及風速計等儀器,進入燃燒塔排放尾氣煙流內進行採樣,並以二氧化碳濃度變化判斷煙流位置,利用量測之CO2、CO、NMHC、H2O、BC 與O2 濃度推估廢氣燃燒塔的破壞效率,並以碳元素及氧元素計算周界空氣稀釋比例,而燃燒塔的破壞效率則以CO2、CO、NMHC 與BC 濃度及混合稀釋比例計算。本研究共進行6 廠次17 根次廢氣燃燒塔效率檢測,其量測結果燃燒效率約介於70%~99%間。
Emission inventory of non-methane hydrocarbon (NMHC) is important to both the air quality management of ozone and air toxics and the air pollution fee program. Many studies have revealed that flares in refinery and petrochemical plants are the major emission sources among the stationary sources of NMHC. Flares are used as control measures for reducing NMHC emission from refinery and petrochemical processes on routine basis in Taiwan, especially under emergencies. Therefore, they are very unique and there are only limited studies about their control efficiencies. Therefore, the purpose of this study is to evaluate the control efficiencies (CE) of flare for NMHC by field measurements. The CE of flare, which doesn’t have stack for emission, was determined by using balloon-borne sampling system and remote-control helicopter. The plume position was decided by CO2 concentration, and calculated the control efficiencies by CO2、CO、NMHC. The dilution ratio of the ambient –air was decided by both O and C element. The results show the control efficiencies range from 70%~99%.
Stone D. K., Lynch S. K., Pandullo R. F., “VOC Destruction controls「Flare”, EPA/452/B-02-001, September 2000
Guide for Pressure-Relieving and Depressurizing Systems, Refining
Department, API Recommended Practice 521, Second Edition,
September 1982.
Kalcevic, V., “Control Device Evaluation Flares and the Use of
Emissions as Fuels”, Organic Chemical Manufacturing Volume 4;
Combustion Control Devices, U.S. Environmental Protection Agency,
Research Triangle Park, NC, Publication no. EPA-450/3-80-026,
December 1980, Report 4.
Reactor Processes in Synthetic Organic Chemical Manufacturing
Industry-Background Information for Proposed Standards, U.S.
Environmental Protection Agency, Office of Air Quality Planning and
Standards, Research Triangle Park, NC, Preliminary Draft, EPA 450/3-
90-016a, June 1990.
Siegel K. D., “Degree of Conversion of Flare Gas in Refinery Elevated”,
PhD Thesis in Engineering Science, Feb, 1980, Chemical Engineering
Department, University of Karlsruhe, Germany.
McDaniel M., Flare Efficiency Study, EPA-600/2-83-052, July1983
Pohl J.H., Payne & J. Lee,“ Evaluation of the Efficiency of Industrial
Flares「Test result”, EPA-600/2-84-095, May 1984
Pohl J.H. and N.R. Soelberg, “Evaluation of the Efficiency of Industrial
Flares「Flare Head Design and Gas Composition”, EPA-600/2-85-106,
September 1985
Pohl J.H. and N.R. Soelberg, “Evaluation of the Efficiency of Industrial
Flares「H2S Gas Mixtures and Pilot Assisted Flares”, EPA-600/2-86-080,
September 1986
Walsh P.M., D.K. Moyeda, W.S. Lanier, C.M. Booth, E.E. Folk, J.
Maxwell, W.K. Whitcraft, R.K. Noble, J.M. Clopton, T. Rogers, C.
Nicely, R.E. Rosensteel and C.A. Miller,○Flame Stability Limits and
Hydrocarbon Destruction Efficiencies of Flare Burning Waste Streams
Containing Hydrogen and Inert Gases”, American Flame Research
Committee Fall Meeting, November 2002
Strosher M., Investigations of Flare Gas Emissions in Alberta, Alberta
Research Council, November 1996
Kostiuk L.W., M.R. Johnson and R.A. Prybysh, Recent Research on the
Emission from Continuous Flares, Combustion and Environment Group,
Department of Mechanical Engineering, University of Alberta, 2000
Gogolek P.E.G. and A.C.S. Hayden, Efficiency of Flare Flames in
Turbulent Crosswind, Advanced Combustion Technologies, Natural
Resource Canada, American Flame Research Committee Spring Meeting,
May 2002
Ozumba C.I., and I.C. Okoro, Combustion Efficiency Measurements of
Flares Operated by an Operating Company, SPE International Conference
on Health, Safety, and the Environment in Oil and Gas Exploration and
Production, Stavanger, Norway, June 2000
Blackwood TR. 2000. An evaluation of flare combustion efficiency using
open-path Fourier transform infrared technology. J Air Waste Manage
50(10): 1714-1722.
Zadakbar O, Vatani A, Karimpour K. 2008. Flare Gas Recovery in Oil
and Gas Refineries. Oil Gas Sci Technol 63(6): 705-711.
Blackwood TR. 2000. An evaluation of flare combustion efficiency using
open-path Fourier transform infrared technology. J Air Waste Manage
50(10): 1714-1722.
Haus R, Wilkinson R, Heland J, Schafer K. 1998. Remote sensing of gas
emissions on natural gas flares. Pure Appl Opt 7(4): 853-862.
Brzustowski TA. 1976. Flaring in Energy Industry. Prog Energ Combust
2(3): 129-141.
Haus R, Wilkinson R, Heland J, Schafer K. 1998. Remote sensing of gas emissions on natural gas flares. Pure Appl Opt 7(4): 853-‐862.
吳義林、劉鍇銘、林清和,2008,應用繫留氣球系統量測廢氣燃塔之NMHC防制效率, 中華民國環境工程學會空氣污染控制技術研討會, 97年6月