| 研究生: |
林彥呈 Lin, Yen-Cheng |
|---|---|
| 論文名稱: |
利用Laplace-Fourier轉換方法分析多含水層表面荷重引起之三維壓密問題 Analyzing Three-dimensional Consolidation Problems of Multi-aquifers due to Surface Loadings by Laplace-Fourier Transform Method |
| 指導教授: |
林育芸
Lin, Yu-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 三維壓密問題 、表面荷重 、多含水層 、Laplace-Fourier轉換方法 |
| 外文關鍵詞: | Three-dimensional consolidation problems, Surface loading, Multi-aquifer, Laplace-Fourier transform |
| 相關次數: | 點閱:152 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文應用Vardoulakis和Harnpattanapanich所開發的方法來解決由表面荷重引起之三維壓密問題。 此方法(我們稱之為L-F法)是建立在Biot的孔隙彈性理論與位移函數在空間與時間轉換域的一般解上。 然而,由於一般解中的指數函數包含有深度 z 以及時間轉換後的變量 "s" ,因此當這兩個變量超出可計算範圍時,會出現數值上的困難。 本研究著重於發展數值技巧以改進L-F法在一些極端情況的使用,包括了:(1) 厚層問題、(2) 多含水/阻水層問題、(3) 極限時間下的壓密行為。 此外,本文也採用有限元素法(FEM)來驗證數值技巧在平面應變與三維下的準確度。 藉由兩種方法的比較,顯示本文提出之數值技巧成功地解決了關於指數函數的問題,同時也突顯出L-F法在效率上的優勢,尤其是對於三維的壓密問題。
This thesis applied the numerical procedure developed by Vardoulakis and Harnpattanapanich to solve three-dimensional consolidation problems caused by surface loading. This procedure (we call it the L-F method) is based on Biot’s poroelastic theory of soils and the general solution of the displacement functions in the transform spatial and time domains. Since the general solutions consist of exponential functions in terms of depth z and the transformed variable "s" of time, difficulties will occur when the components of exponential terms excess the numerical limits. This research focused on improving the L-F method to solve some extreme cases, including (1) thick-layer problems, (2) multi-aquifers/aquitards systems, and (3) limiting time consolidation behaviors. Additionally, finite element models were built to verify the results of our numerical method, and the verification was carried out in both plane-strain and 3D problems. The comparisons show that our numerical techniques successfully solve the difficulties related to exponential terms and the efficiency of the L-F method is better than the finite element method, especially for 3D problems.
[1] Terzaghi, K. (1951). Theoretical Soil Mechanics. Chapman and Hall, Limited.; London.
[2] Biot, M. A. (1941). General theory of three‐dimensional consolidation. Journal of Applied Physics, 12(2), 155-164.
[3] McNamee, J. & Gibson, R. E. (1960). Displacement functions and linear transforms applied to diffusion through porous elastic media. The Quarterly Journal of Mechanics and Applied Mathematics, 13(1), 98-111.
[4] Verruijt, A. (1971). Displacement functions in the theory of consolidation or in thermoelasticity. Journal of Applied Mathematics and Physics, 22(5), 891-898.
[5] Booker, J. R., & Small, J. C. (1982). Finite layer analysis of consolidation. I. International Journal for Numerical and Analytical Methods in Geomechanics, 6(2), 151-171.
[6] Booker, J. R., & Small, J. C. (1982). Finite layer analysis of consolidation. II. International Journal for Numerical and Analytical Methods in Geomechanics, 6(2), 173-194.
[7] Booker, J. R., & Small, J. C. (1987). A method of computing the consolidation behaviour of layered soils using direct numerical inversion of Laplace transforms. International Journal for Numerical and Analytical Methods in Geomechanics, 11(4), 363-380.
[8] Vardoulakis, I., & Harnpattanapanich, T. (1986). Numerical Laplace‐Fourier transform inversion technique for layered‐soil consolidation problems: I. Fundamental solutions and validation. International Journal for Numerical and Analytical Methods in Geomechanics, 10(4), 347-365.
[9] Harnpattanapanich, T., & Vardoulakis, I. (1987). Numerical Laplace–Fourier transform inversion technique for layered soil consolidation problems; II, Gibson soil layer. International Journal for Numerical and Analytical Methods in Geomechanics, 11(1), 103-112.
[10] Wang, J., & Fang, S. (2001). The state vector solution of axisymmetric Biot's consolidation problems for multilayered poroelastic media. Mechanics Research Communications, 28(6), 671-677.
[11] Wang, J., & Fang, S. (2003). State space solution of non-axisymmetric Biot consolidation problem for multilayered porous media. International Journal of Engineering Science, 41(15), 1799-1813.
[12] Chen, G. J. (2004). Consolidation of multilayered half space with anisotropic permeability and compressible constituents. International Journal of Solids and Structures, 41(16-17), 4567-4586.
[13] Ai, Z. Y., Cheng, Z. Y., & Han, J. (2008). State space solution to three-dimensional consolidation of multi-layered soils. International Journal of Engineering Science, 46(5), 486-498.
[14] Ai, Z. Y., Wu, C., & Han, J. (2008). Transfer matrix solutions for three-dimensional consolidation of a multi-layered soil with compressible constituents. International Journal of Engineering Science, 46(11), 1111-1119.
[15] Ai, Z. Y., Cao, G. J., & Cheng, Y. C. (2012). Analytical layer-element solutions of Biot’s consolidation with anisotropic permeability and incompressible fluid and solid constituents. Applied Mathematical Modelling, 36(10), 4817-4829.
[16] Ai, Z. Y., & Cheng, Y. C. (2014). Extended precise integration method for consolidation of transversely isotropic poroelastic layered media. Computers & Mathematics with Applications, 68(12), 1806-1818.
[17] Liang, F., Song, Z., & Jia, Y. (2017). Hydro-mechanical behaviors of the three-dimensional consolidation of multi-layered soils with compressible constituents. Ocean Engineering, 131, 272-281.
[18] Stehfest, H. (1970). Algorithm 368: Numerical inversion of Laplace transforms [D5]. Communications of the ACM, 13(1), 47-49.
[19] Burmister, D. M. (1945). The general theory of stresses and displacements in layered systems. I. Journal of Applied Physics, 16(2), 89-94.
[20] Love, A. E. H. (1892). A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press.
[21] Davies, B., & Martin, B. (1979). Numerical inversion of the Laplace transform: a survey and comparison of methods. Journal of Computational Physics, 33(1), 1-32.
[22] Cohen, A. M. (2007). Numerical Methods for Laplace Transform Inversion (Vol. 5). Springer.
[23] McNamee, J., & Gibson, R. E. (1960). Plane strain and axially symmetric problems of the consolidation of a semi-infinite clay stratum. The Quarterly Journal of Mechanics and Applied Mathematics, 13(2), 210-227.
[24] Gibson, R. E., Schiffman, R. L., & Pu, S. L. (1970). Plane strain and axially symmetric consolidation of a clay layer on a smooth impervious base. The Quarterly Journal of Mechanics and Applied Mathematics, 23(4), 505-520.
[25] Verruijt, A. (1969). Elastic storage of aquifers. Flow through porous media, 331-376.
[26] Rice, J. R., & Cleary, M. P. (1976). Some basic stress diffusion solutions for fluid‐saturated elastic porous media with compressible constituents. Reviews of Geophysics, 14(2), 227-241.
[27] Detournay, E., & Cheng, A. H. D. (1995). Fundamentals of poroelasticity. In Analysis and design methods (pp. 113-171)
[28] Weisstein, Eric W. "Laguerre-Gauss Quadrature." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Laguerre-GaussQuadrature.html