| 研究生: |
林海亞 Nurhayati, |
|---|---|
| 論文名稱: |
以創新策略開發高效率及生態友善之生質乙醇產製技術–
結合乙醇醱酵、細胞固定化、薄膜蒸餾及生物性碳捕捉與固碳 High-Productivity and Eco-Friendly Bioethanol Production through Integration of Cell Immobilization, Membrane Distillation-Coupled Fermentation, and CO2 Capture & Fixation |
| 指導教授: |
張嘉修
Chang, Jo-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 乙醇 、CSTR 、細胞固定化 、Zymomonas mobilis 、聚乙烯醇(PVA) 、薄膜蒸餾 、琥珀酸 、碳捕捉/固定 、纖維乙醇 、間接醱酵法(SHF) |
| 外文關鍵詞: | Bioethanol, CSTR, cell immobilization, Zymomonas mobilis, polyvinyl alcohol (PVA), membrane distillation, succinic acid, carbon capture and fixation, cellulosic bioethanol, separate hydrolysis and fermentation (SHF) |
| 相關次數: | 點閱:129 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在再生能源的眾多選項中,生質乙醇被視為一種極佳的石化燃料替代品。相較於傳統批次乙醇醱酵,本研究進行連續式乙醇醱酵,並結合固定化細胞技術,藉以促進醱酵生產速率之提升,以達成具有經濟發展之重要效益指標。本研究利用聚乙烯醇(PVA)包覆Zymomonas mobilis製成固定化細胞,應用於連續式乙醇醱酵程序中,並透過固定化細胞添加比例與水力停留時間(HRT)等操作因子之最適化實驗設計,藉以達到高乙醇生產速率與低葡萄糖殘留之操作系統。
高濃度葡萄糖醱酵系統中,葡萄糖濃度對於高濃度乙醇生產程序是非常重要的操作指標。本研究利用Fe2O3與聚乙烯醇進行固定化細胞基材修飾進行連續式乙醇醱酵,並針對不同水力停留時間(1到4小時),不同葡萄糖進流濃度(100、125、150 g/L)與不同固定化細胞濃度(20、40、50%)進行連續式醱酵參數試驗。結果可知,在聚乙烯固定化材料中添加1% Fe2O3、葡萄糖進流濃度為125 g/L、固定化細胞添加量為40%(w/v)、且水力停留時間為2小時的操作條件下,可有效將乙醇生產效率從原本的15.74 g/L/h 提升至 31.09 g/L/h,並且此固定化生產系統可以被穩定操作達20天以上,其生產效率與細胞活性都無明顯降低。
本研究接著以薄膜蒸餾移除系統(VMD)進行同步移除乙醇之系統整合,藉以解決生產系統中產物抑制的問題,而本研究成功的將薄膜蒸餾移除系統(VMD)與連續式乙醇生產程序做一個完美的操作整合,並在300 g/L葡萄糖進流濃度條件下,其最大乙醇生產濃度為127.39 g/L、最大乙醇生產速率為63.69 g/L/h,且葡萄糖轉化效率高達84.93%。
此外,在醱酵生產乙醇的程序中,也伴隨著二氧化碳與有機酸等副產物的生成,而二氧化碳在此乙醇生產系統排放氣體中的含量接近100%。由於微藻具有快速生長速率、優異的二氧化碳固定效率與高含量碳水化合物/油脂累積能力,本研究透過微藻系統將二氧化碳進行固定吸收,藉由高碳水化合物之醣藻作為料源用以生產生質乙醇,進而解決二氧化碳這種低價值副產物對環境所造成的衝擊。由於在二氧化碳固定程序中,植物與微藻都必須以陽光做為光合作用之能量,因此,在系統放大生產時受到相當大的限制。有鑑於此,許多微生物在生長時往往需要消耗二氧化碳作為代謝所需,而琥珀酸便是其中一項相關的代謝產物。在琥珀酸醱酵程序中,1 mol二氧化碳經由PEP carboxykinase代謝合成路徑,能夠產生1 mol琥珀酸。由實驗結果可知,琥珀酸醱酵程序所消耗的二氧化碳速率為31.92 g/L/d是微藻系統的15倍,因此以微生物移除二氧化碳並代謝生產琥珀酸是非常具有效益之程序。
由於全世界的纖維料源非常豐富(如:蔗渣、稻稈等),且此類物質之使用可避免與民爭糧的問題。研究最後,利用非糧食作物的纖維料源進行生質乙醇的生產。由研究結果可知,在120 g/L鹼處理蔗渣水解下,可以得到62.79 g/L的葡萄糖,透過連續式固定化細胞之乙醇醱酵系統,其葡萄糖轉化率為94.57%,最大乙醇濃度為26.82 g/L,且最大乙醇產率13.41 g/L/h,此結果也證明利用纖維水解物亦能夠成功的應用於所建立的連續式固定化細胞乙醇生產系統。
Bioethanol as one of renewable energy is considered an excellent alternative clean-burning fuel to replace gasoline. Continuous bioethanol fermentation systems have offered important economic advantages in comparison with traditional systems. Fermentation rates can be significantly improved when the continuous fermentation is integrated with cell immobilization techniques to enrich the cells concentration in the fermenter. Growing cells of Zymomonas mobilis immobilized in polyvinyl alcohol (PVA) gel beads were employed in an immobilized-cell fermenter for continuous bioethanol fermentation from glucose. The glucose loading, dilution rate and cells loading were varied in order to determine the best condition employed in obtaining both high bioethanol production and low residual glucose at high dilution rates.
Higher glucose fermentation rate has been considered as the most important target as it leads to higher bioethanol titer and better bioethanol productivity. To enable bioethanol fermentation at high glucose concentration with continuous-flow operations, the Z. mobilis cells were immobilized using polyvinyl alcohol (PVA) matrix modified with a certain amount of iron (III) oxide (Fe2O3) and the cell immobilization of Z. mobilis was simply performed by using the enriched cells culture media harvested at the exponential growth phase. The production of bioethanol was affected by the medium flow rates or hydraulic retention time (HRT) from 1 to 4 hour. In addition, the effects of both initial glucose loadings (100 g/L, 125 g/L and 150 g/L) and cell loadings (20% (w/v), 40% (w/v) and 50% (w/v)) were also investigated. On the other hand, the bioethanol production performance of Z. mobilis cells immobilized with cross-linked polymer of PVA with 1% (w/v), 2% (w/v) and 3% (w/v) of Fe2O3 and unmodified PVA-immobilized Z. mobilis was compared. Reusability of the immobilized Z. mobilis or stability of beads was examined and found that the immobilized cells could be utilized for more than 20 days without losing their activity. Biothanol productivity increased from 15.74 g/L/h to 31.09 g/L/h when the modified PVA-immobilized Z. mobilis with 1% (w/w) of Fe2O3 was employed and the glucose loading was 125 g/L. Moreover, the HRT of 2 hour and cell loading of 40% (w/v) were considered as the optimum conditions to obtain the best bioethanol fermentation performance.
The modified PVA-immobilized Zymomonas mobilis cells were used to enhance the efficiency of bioethanol production under very high gravity (VHG) conditions. Continuous bioethanol fermentation was integrated with in-situ bioethanol removal via vacuum membrane distillation (VMD) to overcome the problems associated with product inhibition and the resulting low bioethanol productivity during bioethanol fermentation. The developed VMD-integrated VHG fermentation system can be successfully operated under a feeding glucose concentration of up to 300 g/L (or 30% (w/v)), obtaining a maximum bioethanol concentration of 127.39 g/L (or 16.14% (v/v)), an bioethanol productivity of 63.69 g/L/h, and a glucose conversion of 84.93%.
In addition, the production of bioethanol by fermentation must be accompanied by some by-products, such as carbon dioxide (CO2) and organic acids. These by-products can lower the quality and usability of bioethanol as a biofuel and also increase the amount of wastes to cause environmental pollution. CO2 produced from fermentation is of high purity and is nearly a saturated gas (almost 100%). The majority of CO2 applications were dedicated to serving carbonated beverage and food processing/preservation. Beyond these traditional applications, one of the most potential ones is the production of algae-based biofuels through CO2 fixation by microalgae. The advantages of using microalgae CO2 fixation include rapid growth rate and high CO2 fixation capability when compared to conventional plants and high oil/carbohydrate production. The carbohydrate-rich microalgal biomass then can be used for bioethanol production in large scale applications.
Photosynthesis is often required for CO2 fixation. The need of solar energy supply in photosynthesis reactions appears to limit the application of biological CO2 sequestration due to scale-up problems. Furthermore, many microorganisms considered for CO2 fixation have fastidious growth requirements. Succinic acid is a common natural organic acid often found in humans, animals, plants and microorganisms. As 1 mol CO2 is theoretically required for the synthesis of 1 mol succinic acid. CO2 should play an important role in succinic acid production to promote the regulation of the PEP carboxykinase pathway. Compared to carbon capture by microalgae, this developed system encourages much higher CO2 fixation rate. The highest carbon fixation rate achieved for microalgae cultivation was 2.06 g/L/d, while it was 31.92 g/L/d (15 times higher) for succinic acid production. Therefore, production of succinic acid is also a feasible way of biological CO2 removal.
In the end, bioethanol has to be produced from non-food sources. Cellulosic biomass was used for bioethanol fermentation for the purpose of reducing greenhouse gas emissions and giving impacts to rural economy condition. Cellulosic resources are in general very widespread and abundant. Being abundant and outside the human food chain brings cellulosic materials such bagasse, rice straw, etc. relatively inexpensive feedstocks for bioethanol production. A 120 g/L of bagasse loading or corresponding to 62.79 g/L of glucose after hydrolysis was used to evaluate the feasibility of producing bioethanol with the modified-PVA immobilized Z. mobilis cells. The glucose conversion obtained was about 94.57% in average with a bioethanol titer and productivity of approximately 26.82 g/L and 13.41 g/L/h, respectively, during fermentation. The results demonstrate that the modified PVA-immobilized Z. mobilis cells are preferable cell immobilization system for cellulosic bioethanol production.
Agbor, V.B., Cicek, N., Sparling, R., Berlin, A., Levin, D.B. 2011. Biomass pretreatment: Fundamentals toward application. Biotechnol Adv, 29(6), 675-85.
Akin, C. 1987. Biocatalysis with immobilized cells. Biotechnol Genet Eng, 5, 319-67.
Alvira, P., Tomas-Pejo, E., Ballesteros, M., Negro, M.J. 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour Technol, 101(13), 4851-61.
Badger, P.C. 2002. Ethanol from cellulose: A general review. Trends in new crops and new uses.
Bai, F.W., Anderson, W.A., Moo-Young, M. 2008. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv, 26(1), 89-105.
Banat, F.A., Simandl, J. 1999. Membrane distillation for dilute ethanol separation from aqueous streams. J Membrane Sci, 163, 333-48.
Bangkrak, P., Limtong, S., Phisalaphong, M. 2011. Continuous ethanol production using immobilized yeast cells entrapped in loofa-reinforced alginate carriers. Braz J Microbiol, 42, 676-84.
Barrosa, D., Freitasb, S., Padilhaa, G.S., Alegre, R.M. 2013. Biotechnological production of succinic acid by Actinobacillus succinogenes using different substrate. Chemical Engineering Transactions, 32, 985-90.
Bhatia, L., Johri, S., Ahmad, R. 2012. An economic and ecological perspective of ethanol production from renewable agro waste: A review. AMB Express, 2(65), 1-19.
Brennan, L., Owende, P. 2010. Biofuels from microalgae - A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557-577.
Brown, L.M. 1996. Uptake of carbon dioxide from flue gas by microlagae. Energy Convers Mgmt, 37(6-8), 1363-67.
Brown, S.W., Oliver, S.G., Harrison, D.E.F., Righelato, R.C. 1981. Ethanol inhibition of yeast growth and fermentation: Differences in the magnitude and complexity of the effect European J Appl Microbiol Biotechnol, 11, 151-55.
Calibo, R.L., Matsumura, M., Kataoka, H. 1989. Continuous ethanol fermentation of concentrated sugar solutions coupled with membrane distillation using PTFE module. J Ferment Bioeng, 67(1), 40-45.
Chen, C.Y., Kao, P.C., Tsai, C.J., Lee, D.J., Chang, J.S. 2013. Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. Bioresour Technol, 145, 307-12.
Dhillon, R.S., von Wuehlisch, G. 2013. Mitigation of global warming through renewable biomass. Biomass and Bioenergy, 48, 75-89.
Doelle, H.W., Kirk, L., Crittenden, R., Toh, H. 1993. Zymomonas mobilis - Science and industrial application. Crit Rev Biotechnol, 13(1), 57-98.
Dragone, G., Fernandes, B.D., Abreu, A.P., Vicente, A.A., Teixeira, J.A. 2011. Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Applied Energy, 88(10), 3331-3335.
Duarte, J.C., Rodrigues, J.A.R., Moran, P.J.S., Valenca, G.P., Nunhez, J.R. 2013. Effect of immobilized cells in calcium alginate beads in alcoholic fermentation. AMB Express, 3(31), 1-8.
Energy, B.S.R.o.W. 2013. BP statistical review of world energy June 2013. bp.com/statisticalreview.
Felice, B.D., Blasi, V.O., Castro, O.D., Cennamo, P., Martino, L., Trifuoggi, M., Condorelli, V., Onofrio, V.D., Guida, M. 2012. Genetic structure of a novel biofuel-producing microorganism community. J Genet, 91(2), 183-91.
Fernandes, D.L.A., Pereira, S.R., Serafim, L.S., Evtuguin, D.V., Xavier, A.M.R.B. 2012. Second generation bioethanol from lignocellulosics: Processing of hardwood sulphite spent liquor. http://www.intechopen.com/books/bioethanol/second-generation-bioethanol-from-lignocellulosics-processingof-hardwood-sulphite-spent-liquor.
Gancel, F., Montastruc, L., Liu, T., Zhao, L., Nikov, I. 2009. Lipopeptide overproduction by cell immobilization on iron-enriched light polymer particles. Process Biochemistry, 44(9), 975-978.
Geddes, C.C., Peterson, J.J., Roslander, C., Zacchi, G., Mullinnix, M.T., Shanmugam, K.T., Ingram, L.O. 2010. Optimizing the saccharification of sugar cane bagasse using dilute phosphoric acid followed by fungal cellulases. Bioresour Technol, 101(6), 1851-7.
Gokgoz, M., Yigitoglu, M. 2011. Immobilization of Saccharomyces cerevisiae on to modified carboxymethylcellulose for production of ethanol. Bioprocess Biosyst Eng, 34(7), 849-57.
Goldemberg, J. 2007. Ethanol for a sustainable energy future. Science, 315(5813), 808-10.
Gryta, M. 2013. Effect of flow-rate on ethanol separation in membrane distillation process. Chemical Papers, 67(9), 1201-1209.
Gryta, M., Barancewicz, M. 2011. Separation of volatile compounds from fermentation broth by membrane distillation. Pol J Chem Tech, 13(3), 56-60.
Gryta, M., Morawski, A.W., Tomaszewska, M. 2000. Ethanol production in membrane distillation bioreactor. Catalysis Today, 56, 159-65.
Guisan, J.M. 2006. Immobilization of enzymes and cells, 2nd Edition. Humana Press.
Hamelinck, C.N., Hooijdonk, G.v., Faaij, A.P.C. 2005. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass and Bioenergy, 28(4), 384-410.
Hanagata, N., Takeuchi, T., Fukuju, Y. 1992. Tolerance of microalgae to high CO2 and high temperature. Phytochemistry, 31(10), 3345-48.
Hassan, M.H., Kalam, M.A. 2013. An overview of biofuel as a renewable energy source: Development and challenges. Procedia Engineering, 56, 39-53.
Hendriks, A.T., Zeeman, G. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol, 100(1), 10-8.
Hirata, S., Hayashitani, M., M.Taya, Tone, S. 1996a. Carbon dioxide fixation in batch culture of Chlorella sp. using a photobioreactior with a sunlight-collection device. Journal of fermentation and bioengineering, 81(5), 470-72.
Hirata, S., Taya, M., Tone, S. 1996b. Characterization of Chlorella cell cultures in batch and continuos operations under a photoautotrophic condition. Journal of Chemical Engineering of Japan, 29(6), 953-59.
Ho, S.H., Kondo, A., Hasunuma, T., Chang, J.S. 2013. Engineering strategies for improving the CO2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation. Bioresour Technol, 143, 163-71.
Hu, C., Qin, Q., Gao, P. 2011. Medium optimization for improved ethanol production in very high gravity fermentation. Chinese Journal of Chemical Engineering, 19(6), 1017-1022.
Huang, C.F., Lin, T.H., Guo, G.L., Hwang, W.S. 2009. Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Bioresour Technol, 100(17), 3914-20.
Janiszyn, Z., Dziuba, E., Boruczkowski, T., Chmielewska, J., Kawa-Rygielska, J., Rosiek, G. 2007. Ethanol fermentation with yeast cells immobilized on grains of porous ceramic sinter. Pol J Food Nutr Sci, 57(4(B)), 245-50.
Ji, H., Yu, J., Zhang, X., Tan, T. 2012. Characteristics of an immobilized yeast cell system using very high gravity for the fermentation of ethanol. Appl Biochem Biotechnol, 168(1), 21-8.
Kennedy, J.F., Cabral, J.M., Kosseva, M.R., Paterson, M. 1996. Transition metal methods for immobilization of enzymes and cells. School of Chemistry, University of Birmingham, UK, 1, 345-59.
Kodama, M., Ikemoto, H., Miyachi, S. 1993. A new species of highly CO2-tolerant fast-growing marine microalga suitable for high-density culture. Journal of Marine Biotechnology, 1(1), 763-66.
Kourkoutas, Y., Bekatorou, A., Banat, I.M., Marchant, R., Koutinas, A.A. 2004. Immobilization technologies and support materials suitable in alcohol beverages production: A review. Food Microbiology, 21(4), 377-397.
Krishnan, M.S., Blanco, M., Shattuck, C.K., Nghiem, N.P., Davidson, B.H. 2000. Ethanol production from glucose and xylose by immobilized Zymomonas mobilis CP4(pZB5). Appl Biochem Biotechnol, 84-86.
Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F.X., van Langenhove, H. 2010a. Enhanced CO2 fixation and biofuel production via microalgae: Recent developments and future directions. Trends Biotechnol, 28(7), 371-80.
Kumar, S., Singh, S.P., Mishra, I.M., Adhikari, D.K. 2010b. Continuous ethanol production by Kluyveromyces sp. IIPE453 immobilized on bagasse chips in packed bed reactor. J. Petroleum Technol Altern Fuels, 2(1), 1-6.
Lee, P.C., Lee, W.G., Kwon, S., Lee, S.Y., Chang, H.N. 1999. Succinic acid production by Anaerobiospirillum succiniciproducens: Effects of the H2/CO2 supply and glucose concentration. Enzyme Microb Tech, 24, 549-54.
Lewandowicz, G., Białas, W., Marczewski, B., Szymanowska, D. 2011. Application of membrane distillation for ethanol recovery during fuel ethanol production. Journal of Membrane Science, 375(1-2), 212-219.
Li, F., Zhao, X.Q., Ge, X.M., Bai, F.W. 2009. An innovative consecutive batch fermentation process for very high gravity ethanol fermentation with self-flocculating yeast. Appl Microbiol Biotechnol, 84(6), 1079-86.
Li, S.Y., Srivastava, R., Suib, S.L., Li, Y., Parnas, R.S. 2011. Performance of batch, fed-batch, and continuous A-B-E fermentation with pH-control. Bioresour Technol, 102(5), 4241-50.
Limayem, A., Ricke, S.C. 2012. Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38(4), 449-467.
Lin, Y., Tanaka, S. 2006. Ethanol fermentation from biomass resources: Current state and prospects. Appl Microbiol Biotechnol, 69(6), 627-42.
Lu, S., Eiteman, M.A., Altman, E. 2009. Effect of CO2 on succinate production in dual-phase Escherichia coli fermentations. J Biotechnol, 143(3), 213-23.
Matsumoto, H., Shioji, N., Hamasaki, A., Ikuta, Y., Fukuda, Y., Sato, M., Endo, N., Tsukamoto, T. 1995. Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Applied Biochemistry and Biotechnology, 51-52(1), 681-92.
Menon, V., Prakash, G., Rao, M. 2010. Enzymatic hydrolysis and ethanol production using xyloglucanase and Debaromyces hansenii from tamarind kernel powder: Galactoxyloglucan predominant hemicellulose. J Biotechnol, 148(4), 233-9.
Miura, Y., Yamada, W., Hirata, K., Miyamoto, K., Kiyohara, M. 1993. Stimulation of hydrogen production in algal cells grown under high CO2 concentration and low temperature. Applied Biochemistry and Biotechnology, 39-40(1), 753-61.
Miyachi, S., Iwasaki, I., Shiraiwa, Y. 2003. Historical perspective on microalgal and cyanobacterial acclimation to low- and extremely high- conditions. Photosynth Res, 77, 139-53.
Miyairi, S. 1995. CO2 assimilation in a thermophilic cyanobacterium. Energy Conversion and Management, 36(6-9), 763-66.
Nagase, H., Eguchi, K., Yoshihara, K., Hirata, K., Miyamoto, K. 1998. Improvement of microalgal NOx removal in bubble column and airlift reactors. Journal of Fermentation and Bioengineering, 86(4), 1998.
Najafpour, G., Younesi, H., Syahidah Ku Ismail, K. 2004. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Bioresour Technol, 92(3), 251-60.
Nakano, Y., Miyatake, K., H.Okuno, Hamazaki, K., Takenaka, S., Honami, N., Kiyota, M., Aiga, I., Kondo, J. 1996. Growth of photosynthetic algae Euglena in high CO2 conditions and its photosynthetic characteristics. Acta Horticulturae, 440(9), 49-54.
Nghiem, N.P., Hicks, K.B., Johnston, D.B. 2010. Integration of succinic acid and ethanol production with potential application in a corn or barley biorefinery. Appl Biochem Biotechnol, 162(7), 1915-28.
Olofsson, K., Bertilsson, M., Liden, G. 2008. A short review on SSF - An interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels, 1(1), 7.
Pan, J., Zhang, R., Elmashad, H., Sun, H., Ying, Y. 2008. Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. International Journal of Hydrogen Energy, 33(23), 6968-6975.
Radakovits, R., Jinkerson, R.E., Darzins, A., Posewitz, M.C. 2010. Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell, 9(4), 486-501.
Rebros, M., Rosenberg, M., Stloukal, R., Kristofikova, L. 2005. High efficiency ethanol fermentation by entrapment of Zymomonas mobilis into LentiKats. Lett Appl Microbiol, 41(5), 412-6.
Salih, F.M. 2011. Microalgae tolerance to high concentrations of carbon dioxide: A review. Journal of Environmental Protection, 02(05), 648-654.
Samuelov, N.S., Lamed, R., Lowe, S., Zeikus, J.G. 1991. Influence of CO2-HCO3- levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens. Appl Environ Microb, 57(10), 3013-19.
Seckbach, J., Gross, H., Nathan, M.B. 1971. Growth and photosynthesis of Cyanidium caldarium cultured under pure CO2. Israel Journal of Botany, 22(84-90).
Sobczuk, T.M., Camacho, F.G., Rubio, F.C., Fernandez, F.G.A., Grima, E.M. 2000. Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnol Bioeng, 67(4), 465-75.
Srichuwong, S., Fujiwara, M., Wang, X., Seyama, T., Shiroma, R., Arakane, M., Mukojima, N., Tokuyasu, K. 2009. Simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash for the production of ethanol. Biomass and Bioenergy, 33(5), 890-898.
Sukumaran, R.K., Singhania, R.R., Mathew, G.M., Pandey, A. 2009. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renewable Energy, 34(2), 421-424.
Sun, X.F., Sun, R.C., Sun, J.X. 2004. Acetylation of sugarcane bagasse using NBS as a catalyst under mild reaction conditions for the production of oil sorption-active materials. Bioresour Technol, 95(3), 343-50.
Sydney, E.B., Sturm, W., de Carvalho, J.C., Thomaz-Soccol, V., Larroche, C., Pandey, A., Soccol, C.R. 2010. Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol, 101(15), 5892-6.
Taherzadeh, M.J., Karimi, K. 2007. Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: A review. BioResources, 2(4), 707-38.
Taherzadeh, M.J., Millati, R., Niklasson, C. 2001. Continuous cultivation of dilute-acid hydrolysates to ethanol by immobilized Saccharomyces cerevisiae. Appl Biochem Biotechnol, 95.
Takei, T., Ikeda, K., Ijima, H., Kawakami, K. 2011. Fabrication of poly(vinyl alcohol) hydrogel beads crosslinked using sodium sulfate for microorganism immobilization. Process Biochemistry, 46(2), 566-571.
Tao, X., Zheng, D., Liu, T., Wang, P., Zhao, W., Zhu, M., Jiang, X., Zhao, Y., Wu, X. 2012. A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation. PLoS One, 7(2), e31235.
Tomaszewska, M. 2000. Membrane distillation - Examples of applications in technology and environmental protection. Pol J Environ Stud, 9(1), 27-36.
Tomaszewska, M., Bialoñczyk, L. 2011. The investigation of ethanol separation by the membrane distillation process. Pol J Chem Tech, 13(3), 66-69.
Tong, Z., Pullammanappallil, P., Teixeira, A.A. 2012. How ethanol is made from cellulosic biomass. http://edis.ifas.ufl.
Vucurovic, V., Razmovski, R., Popov, S. 2009. Ethanol production using Saccharomyces cerevisiae cells immobilised on corn stem ground tissue. Zbornik Matice srpske za prirodne nauke(116), 315-322.
Wanderley, M.C., Martin, C., Rocha, G.J., Gouveia, E.R. 2013. Increase in ethanol production from sugarcane bagasse based on combined pretreatments and fed-batch enzymatic hydrolysis. Bioresour Technol, 128, 448-53.
Wang, B., Li, Y., Wu, N., Lan, C.Q. 2008. CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol, 79(5), 707-18.
Wirawan, F., Cheng, C.-L., Kao, W.-C., Lee, D.-J., Chang, J.-S. 2012. Cellulosic ethanol production performance with SSF and SHF processes using immobilized Zymomonas mobilis. Applied Energy, 100, 19-26.
Xi, Y.L., Chen, K.Q., Li, J., Fang, X.J., Zheng, X.Y., Sui, S.S., Jiang, M., Wei, P. 2011. Optimization of culture conditions in CO2 fixation for succinic acid production using Actinobacillus succinogenes. J Ind Microbiol Biotechnol, 38(9), 1605-12.
Xu, Y., Isom, L., Hanna, M.A. 2010. Adding value to carbon dioxide from ethanol fermentations. Bioresour Technol, 101(10), 3311-9.
Yamashita, Y., Kurosumi, A., Sasaki, C., Nakamura, Y. 2008. Ethanol production from paper sludge by immobilized Zymomonas mobilis. Biochemical Engineering Journal, 42(3), 314-319.
Yan, J., Lin, T. 2009. Biofuels in Asia. Applied Energy, 86, S1-S10.
Yoshihara, K., Nagase, H., K. Eguchi, Hirata, K., K. Miyamoto. 1996. Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivation in a long tubular photobioreactor. Journal of Fermentation and Bioengineering, 82(4), 351-54.
Zain, M.M., Kofli, N.T., Yahya, S.R.S. 2011. Bioethanol production by calcium alginate-immobilised ST1 yeast system: Effects of size of beads, ratio and concentration. IIUM Engineering Journal, 12(4), 11-19.
Zeikus, J.G., Jain, M.K., Elankovan, P. 1999. Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51, 545-52.
Zhaoxin, L., Fengxia, L., Xiaomei, B., Fujimura, T. 2002. Immobilization of yeast cells with polymeric carrier cross-linked using radiation technique. American Chemical Society.
Zittel, W., Zerhusen, J., Zerta, M. 2013. Fossil and nuclear fuels – The supply outlook. www.energywatchgroup.org.