簡易檢索 / 詳目顯示

研究生: 鄭家宜
Cheng, Chia-Yi
論文名稱: 應用殘差修正法於非線性熱傳問題之研究
Study on Non-linear Heat Transfer Problems using Residual Correction Method
指導教授: 陳朝光
Chen, Chao-Kuang
楊玉姿
Yang, Yue-Tzu
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 80
中文關鍵詞: 誤差分析最大值原理較大與較小近似解樣線函數殘差
外文關鍵詞: residual, spline function, maximum principle, upper and lower approximate solutions, error analysis
相關次數: 點閱:114下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以微分方程式最大值原理為主要觀念,建構出完整的理論架構,並求解微分方程式之近似解,為正確解之較大或較小近似值。依據所求得之平均近似解進行誤差分析,有效解決傳統數值方法上常無謂地增加格點數或近似函數數目之缺點。此理論具備誤差分析之特性,將節省計算時間與運算空間,並避免不必要反覆式地數值精度測試,預期將成為極具學術價值與實用性之數值研究方法。
    在微分方程式最大值原理應用於殘差修正法前,必須判斷該方程式是否具備單調之性質。除運用傳統單調性基礎理論之單調疊代的觀念外,本研究提出漸進式疊代法,讓最大值原理適用於更複雜的方程式中。在具有精準度高及應用範圍廣泛的樣線函數離散微分方程式後,利用殘差修正法之觀念,將單調性所推導出不等式拘束條件的數學規劃問題,轉換為簡單的等式疊代問題。
    因此,本研究在確認微分方程式具備單調性質後,由殘差修正法得到較大及較小近似解及其的最大可能誤差範圍。除此,更可有效且準確地求解各類複雜的微分方程式。

    The maximum principle of the differential equation is used as the main concept to form the complete structure in this study. Based on this, the upper and lower approximate solutions of the exact solution can be obtained. Analyzing the error according to the mean value of the upper and lower approximate solutions can effectively deal with the defects resulting from increasing the numbers of grids or approximate functions when using traditional numerical methods. This methodology can reduce the computing time, save the memory, and promote the numerical accuracy outstandingly. Predictably, it will achieve high academic value and practicability in numerical research in the future.
    Before applying the maximum principle of differential equations to residual correction method, the existence of the monotonicity of the certain equation must be determined. Except the monotonic iteration method used in conventional fundamental theory of monotonicity, the evolutionary iteration method is applied in this study and makes the maximum principle more suitable to complicated equations. Moreover, based on that the properties of the spline functions which the solutions are more accurate and are applied in wider field, the mathematic programming problems with inequality constraints derived by the monotonicity of the maximum theory could be transform to the simple iteration problems with equality constraints by the residual correction method after the discretization of the differential equations.
    Hence, after making sure the differential equations have the monotonicity. By the residual correction method, the upper and lower approximate solutions and maximum error range of solutions can be acquired. Besides, many kinds of complicated differential equations are able to be solved with high accuracy and efficiency by this methodology.

    摘要 I ABSTRACT II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 符號說明 XI 第一章 緒論 1 1.1 研究動機及其背景 1 1.2 文獻回顧 2 1.3 本文架構 4 第二章 最大值原理及其單調性 5 2.1 前言 5 2.2 一維最大值原理及其單調性 5 2.2.1 一維最大值原理之基礎理論 5 2.2.2 邊界值問題之單調性 7 2.2.3 初始值問題之單調性 8 2.2.4 非線性問題之單調性 10 2.3 橢圓型方程最大值原理及其單調性 11 2.3.1 橢圓型方程最大值原理 11 2.3.2 橢圓型偏微分方程式之單調性 12 2.4 運用漸進疊代觀念於單調性之證明 13 第三章 解析樣線函數 17 3.1 前言 17 3.2 三次樣線之數學理論及應用 18 3.2.1 三次樣線之基礎理論 18 3.2.2 利用三次樣線求解微分方程 22 3.3 B樣線函數之數學理論及應用 24 3.3.1 B樣線之理論性質 24 3.3.2 B樣線近似函數之應用 24 3.3.3 多維空間B樣線函數之數學理論及應用 26 第四章 殘值修正法 28 4.1 前言 28 4.2 殘差修正法之基本概念 28 4.3 一維殘差修正法之解題步驟 29 4.4 多維殘差修正法之解題步驟 31 第五章 實例分析 33 5.1 前言 33 5.2 一維非線性熱傳問題 33 5.3 橢圓型方程式熱傳問題 54 5.4 高階微分方程式邊界值問題 70 第六章 結論與建議 74 6.1 結論 74 6.2 建議及展望 75 參考文獻 76 自述 80

    Ahlbrg, J.H., Nilson, E.N., and Walsh, J.L., The Theory of Splines and Their Application, Academic Press, 1967.
    Aparecido, J.B., and Cotta, R.M., “Improved One-Dimensional Fin Solutions,” Heat Transfer Engineering, vol. 11, no. 1, pp. 49-59, 1990.
    Aziz, A., and Nguyen, H., “Two-dimension performance of convecting-radiating fins of different profile shapes”, Warme- und Stoffubertragung, vol. 28, pp.481-487, 1993
    Aziz, A., and Lunardini. V. J., “Multidimensional Steady Conduction in Convecting, Radiation, and Convecting-Radiating Fins and Fin Assemblies”, Heat transfer Engineering, vol. 16, no.3, pp.32-63, 1995
    Arauzo, I., Campo, A., and Cortes, C., “Quick Estimate of the Heat Transfer Characteristics of Annular Fins of Hyperbolic Profile with the Power Series Method,” Applied Thermal Engineering, vol. 25, pp. 623-634, 2005.
    Basto, M., Semiao, V., and Calheiros, F.L., “Numerical Study of Modified Adomian’s Method Applied to Burgers Equation,” Journal of Computational and Applied Mathematics, vol. 206, pp. 927-949, 2007.
    De Boor, C., A Practical Guide to Splines, Springer-Verlag, New York, 1978.
    Coakley, P.S., A High-Order B-Spline Based Panel Method for Unsteady, Nonlinear, Three-Dimensional Free Surface Flows, Ph. D. Dissertation, University of California, Berkeley, Dept. of Naval Architecture and Offshore Engineering, May 1995.
    Chiu, C.H., and Chen, C.K., “A Decomposition Method for Solving the Convective Longitudinal Fins with Variable Thermal Conductivity,” International Journal of Heat and Mass Transfer, vol. 45, pp. 2067-2075, 2002.
    Chang, C.L., and Lee, Z.Y., “Applying the Double Side Method of Weighted Residual for Solving Circle Plate Large Deformation Problems,” Applied Mathematics and Computation, vol. 141, pp. 477-490, 2003.
    Chang, C.L., and Lee, Z.Y., “Applying the Double Side Method to Solution Nonlinear Pendulum Problem,” Applied Mathematics and Computation, vol. 149, pp. 613-624, 2004.
    Greville, T. N. E., Theory and Applications of Spline Functions, Academic Press, New York, 1969.
    Jang, B., “Exact Solutions to One Dimensional Non-Homogeneous Parabolic Problems by the Homogeneous Adomian Decomposition Method,” Applied Mathematics and Computation, vol. 186, pp. 969-979, 2007.
    Kern, D.Q. and Kraus, A.D., Extended Surface Heat Transfer, McGraw-Hill, New York, 1972.
    Klaus, Finite Element Methods with B-Splines, Society for Industrial and Applied Mathematics, Philadelphia, 2003.
    Layeni, O.P., “Remark on Modifications of Adomian Decomposition Method,” Applied Mathematics and Computation, vol. 197, pp. 167-171, 2008.
    Muzzio, A., “Approximate Solution for Convective Fins with Variable Thermal Conductivity,” Trans. ASME-Journal of Heat Transfer, pp. 680-682, November 1976
    Mokheimer and Esmail, M.A., “Performance of Annular Fins with Different Profiles Subject to Variable Heat Coefficient,” International Journal of Heat and Mass Transfer, vol. 45, pp. 3631-3642, 2002.
    Mohamed El-Gamel, ”Sinc and the numerical solution of fifth-order boundary value problems”, Applied Mathematics and Computation, vol. 187, pp. 1417-1433, 2007
    Mladen Mestrovic, “The modified decomposition method for eighth-order boundary value problems,” Applied Mathematics and Computation, vol. 188, pp. 1437-1444, 2007
    Protter, M.H., and Weinberger, H.F., Maximum Principles in Differential Equations, Prentice-Hall, New Jersey, 1967.
    Rubin, S.G., and Graves, R.A., “Viscous Flow Solution with a Cubic Spline Approximation,” Computers and Fluids, vol. 1, no.5, pp. 1-36, 1975.
    Rubin, S.G., and Khosla, P.K., “Higher-Order Numerical Solution Using Cubic Splines,” AIAA Journal, vol. 14, pp. 851-858, 1976.
    Rubin, S.G., and Khosla, P.K., “Polynomial Interpolation Methods for Viscous Flow Calculation,” Journal of Computational Physics, vol. 24, pp. 217-244, 1977.
    Schneider, P.J., Conduction Heat Transfer, Addison-Wisely, Cambridge, 1955.
    Schryer, N.L., A Tutorial on Garlerkin’s Method, Using B-Splines, for Solving Differential Equations, Bell Laboratories, New Jersey, 1976.
    Sperb, R.P., Maximum Principles and Their Applications, Academic Press, New York, 1981.
    王啟昌,波形表面效應在水平板模狀凝結及非牛頓流體通過平板或渠道上之熱傳研究,博士論文,成功大學,2001。
    李宗乙,遺傳算則之雙側逼近加權殘差法在工程上之應用,博士論文,成功大學,2001。
    林金木,數學規劃加權殘差法在工程上的應用,博士論文,成功大學,2000。
    徐次達,固體力學加權殘差法,同濟大學出版社,1987。
    黃永生,B-Spline方法在原子物理上的應用,博士論文,交通大學,2000。
    賈明益,應用三次樣線定置法解邊界層熱傳遞問題,博士論文,成功大學,1988。

    下載圖示 校內:2011-07-26公開
    校外:2013-07-26公開
    QR CODE