| 研究生: |
張弘迪 Chang, Hung-Ti |
|---|---|
| 論文名稱: |
空腔內之熱壁上具穿孔鰭片的自然對流熱傳研究 Study on natural convective heat transfer of perforated fins on a hot wall in a cavity |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 逆算法 、封閉空腔 、自然對流 、水平鰭片 、CFD模擬 |
| 外文關鍵詞: | Inverse scheme, Perforated fins on a hot wall in a cavity, heat transfer coefficient, natural convection |
| 相關次數: | 點閱:75 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以逆向方法及實驗特定溫度點的量測搭配ANSYS ICEPAK 15中各種流動模式的比較,確立合適於散熱水平鰭片置於封閉空腔內的熱壁中之系統的流動模式,再經由合適的流動模式預測水平鰭片之熱傳導係數及觀測鰭片對於封閉空腔內的流場產生之影響。實驗方面以穿孔及未穿孔鰭片隨鰭片位置、鰭片間距及鰭片數量等測試對鰭片表面的熱傳導係數及鰭片本身周圍的流場產生之影響。並利用ANSYS ICEPAK 15進行網格測試,研究網格劃分對於系統求解的影響。結果顯示雙鰭片在熱傳導係數的表現上複雜許多,鰭片間邊界層的互相影響或鰭片與空腔上下邊界的互相影響,使得鰭片之熱傳係數不再只是隨著鰭片間距增加而上升,透過以實驗數據搭配數值結果的溫度分布圖及速度流線圖去分析實驗的實驗數據的種種現象,另外嘗試以無因次參數進行流場行為之說明,並和研究結果進行互相驗證,最後為了驗證結果之可靠性及可用性,將所求結果與相關參考文獻之現象比較,得到穿孔鰭片確實能破壞鰭片周圍之邊界層,促使鰭片附近的流場趨於紊亂,流場之流速提升,鰭片本身的熱傳導係數也有所提升。
The present study applies the inverse method and computational fluid dynamics (CFD) software along with experimental method to predict the heat transfer and fluid characteristics of fins on a hot wall in a cavity. The effects of some physical parameters such as fin spacing, fin diameter and fin numbers, are examined. The inverse method applied finite difference method in conjunction with the least-squares scheme and the experimental data to estimate the heat transfer coefficient on the fins. With the methods of Rayleigh number with references and the comparsion between experimental and numerical results to obtain the appropriate flow model are included. Effect of perforation on fins in a cavity around fin is investigated by the temperature contour, velocity field and heat transfer characteristic. Perforation cause perturbation and reinforce heat convection around fins. Increase of Heat transfer coefficient and the change of temperature distribution on fins can be observed under the influence of perforation. Perforation cannot cause additional effect on fins. We found that the incease of heat transfer coefficient by the effect of perforation didn’t change under different parameters, such as fin postion, fin spacing and fin numbers under investigation. Although the effect of perforation can increase heat transfer coefficient on fins, the use of perforation on fins exists many challenges.
[1] X. Shi, J.M. Khodadadi, Laminar natural convection heat transfer in a differentially heated square cavity due to a thin fin on the hot wall, Int. J. Heat Transfer 125 (2003), pp. 624-634
[2] E. Bilgen, Natural convection in cavities with a thin fin on the hot wall, Int. J. Heat Mass Transf. 48 (2005), pp. 3493-3505.
[3] T. Fusegi, J.M. Hyun, K. Uwahara, B Farouk, A numerical study of three-dimensional in a differentially heated cubical enclosure, Int. J. Heat Mass Transfer, vol. 34, No 6 (1991), pp. 1543-1557
[4] F. Xu, J.C. Patterson, C. Lei, An experimental study of the unsteady thermal flow around a thin fin on a sidewall of a differentially heated cavity, Int. J. Heat Fluid Flow, vol. 29 (2008), pp. 1139-1153
[5] F. Xu, J.C. Patterson, C. Lei, Transition to a periodic flow induced by a thin fin on the sidewall of a differentially heated cavity, Int. J. Heat Mass Transfer, vol. 52 (2009), pp. 620-628
[6] F. Xu, J.C. Patterson, C. Lei, Transient natural convection flows around a thin fin on the sidewall of a differentially heated cavity, J. Fluid Mech., vol. 639 (2009), pp. 261-290
[7] D.A. Kaminski, C. Prakash, Conjugate natural convection in a square enclosure: effect of conduction in one of the vertical walls, Int. J. Heat Mass Transf. 29 (1986) pp. 1979-1988.
[8] A. Elatar, M.A. Teamah, M.A. Hassab, Numerical study of laminar natural convection inside square enclosure with single horizontal fin, Int. J. Therm. Science, vol. 99 (2016), pp. 41-51
[9] S. Jani, M. Amini, M. Mahmoodi, Numerical study of free convection heat transfer in a square cavity with a fin attached to its cold wall, Heat Transfer Research, vol. 42 (2011), pp. 251-256
[10] A. Kadari, Nord-Eddine S. Chemloul, S. Mekroussi, Numerical investigation of laminar natural convection in a square cavity with wavy wall and horizontal fin attached to the hot wall, J. Heat Transfer, vol. 140 (2018), pp. 072503- 072503-15
[11] X. Liu, J. Yu, G. Yan, A numerical study on the air-side heat transfer of perforated finned-tube heat exchangers with large fin pitches, Int. J. Heat Mass Transfer, vol. 100 (2016), pp. 199-207
[12] R.L. Frederick, S.G. Moraga, Three-dimensional natural convection in finned cubical enclosure, Int J.Heat Fluid Flow 28(2007), pp. 289-298
[13] F. Ampofo, Turbulent natural convection of air in a non-partitioned or partitioned cavity with differentially heated vertical and conducting horizontal walls, Exp Therm Fluid Sci 29 (2005), pp. 37-157.
[14] C. Benseghir, S. Rahal, Simulation of heat transfer in a square cavity with two fin attached to the hot wall, Energy Procedia 18 (2012), pp.1299-1306.
[15] Wael Al-Kouz, Aiman Alshare, Suhil Kiwan, Ahmad Al Muhtady, Ammar Alkhalidi, Ammar Haneen Saadeh, Two-dimensional analysis of low-pressure flows in an inclined spuare cavity with two fins attached to the hot wall, International Journal of Thermal Sciences 126(2018), pp. 181-193
[16] Thamir K. Ibrahim, Marwah N. Mohammed, Mohammed Kamil Mohammed, G Najafi, Nor Azwadi Che Sidik, Firdaus Basrawi, Ahmed N Abdkka, S.S Hoseini, Experimental study on the effect of perforations shapes on vertical heated fins perforations under forced convection heat transfer, International Journal of Heat and Mass Transfer 118(2018), pp. 832-846
[17] Shitole Pankaj, Bhosle Santosh, Kulkarni Kishor, Joshi Sarrang, Experimental Ivestigation of Heat Transfer by Natural Convection with Perforated Pin Fin Array, Procedia Manufacturing 20(2018), pp.311-317
[18] U.V. Awasarmol, A.T. Pise, An experimental investigation of natural convection heat transfer enhancement from perforated rectangular fins array at different inclinations, Exp. Therm. Fluid Sci. 68 (2015), pp. 145–154.
[19] A. Maji, D. Bhanja, P.K. Patowar, Numerical investigation on heat transfer enhancement of heat sink using perforated pin fins with inline and staggered arrangement, Appl. Therm. Eng., vol. 125, pp 596-616, 2017.V. Glazar, A. Trp and K. Lenic, Numerical study of heat transfer and analysis of optimal fin pitch in a wavy fin-and-tube heat exchanger, Heat Transfer Eng., vol. 33(2)(2012), pp. 88-96
[20] D.H. Lee, J.M. Jung, J.H. Ha, Y.I. Cho, Improvement of heat transfer with perforated circular holes in finned tubes of air-cooled heat exchange, Int. Comm. Heat Mass Transfer, vol. 39(2012), pp. 161-166
[21] A Direct Analytical Approach for Solving Linear Inverse Heat Conduction Problems, ASME J. Heat Transfer, vol 107(1985), pp. 700-703
[22] S.Sunil, J.R.N. Reddy, C.B. Sobhan, Natural convection heat transfer from a thin rectangular fin with a line source at the base – A finite difference solution. Int. J. Heat Mass Transfer, vol 31(1996), pp. 127-135
[23] Piotr Duda, Konieczny, Solution of an inverse transient heat conduction problem in a part of a complex domain, Int. J Heat Mass Transfer. Vol127 (2018), pp. 821-832
[24] H.T. Chen, Y.J. Chiu, C.S. Liu, J.R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical annular finned tube heat exchanger, Int. J. Heat Mass Transf. 109 (2017), pp. 378–392.
[25] H.T. Chen, Y.J. Chiu, C.S. Liu, J.R. Chang, Effect of domain boundary set on natural convection heat transfer characteristics for vertical annular finned tube heat exchanger, Int. J. Heat Mass Transf. 109 (2017), pp. 668–682.
[26] H.T. Chen, H.C. Tseng, S.W. Jhu, J.R. Chang, Numerical and experimental study of mixed convection heat transfer and fluid flow characteristics of plate-fin heat sinks, Int. J. Heat Mass Transf. 111 (2017), pp. 1050–1062.
[27] H.T. Chen, Y.L. Chang, P.Y. Lin, Y.J. Chui, J.R. Chang, Numerical study of mixed convection heat transfer for vertical annular finned tube heat exchanger with experimental data and different tube diameters, Int. J. Heat Mass Transf. 118 (2018), pp 931–947
[28] H.T. Chen, Ming-Chung Lin, Jiang-Ren Chang, Numerical and experimental studies of natural convection in a heated cavity with a horizontal fin on a hot sidewall, Int J. Heat Mass Transf. 124(2018), pp. 1217-1229
[29] M.N. Özişik and H.R.B. Orlande, Inverse Heat Transfer: Fundamentals and Applications, Taylor & Francis, New York, (2000)
[30] A.N. Tikhonov and V.Y. Arsenin, Solution of Ill-posed Problems, V.H. Winston & Sons, Washington, DC, (1977).
[31] O.M. Alifanov, Inverse Heat Transfer Problem, Springer-Verlag, Berlin, (1994).
[32] J.V. Beck and B. Blackwell, C.R. St. Clair, Inverse Heat Conduction: Ill-Posed Problems, Wiley Interscience, New York, (1985).
[33] V.S Arpaci, Introduction to Heat Transfer, Prentice Hall, New Jersey, (1999), pp. 580
[34] A. BeJan, Heat Transfer, John Wiley & Sons, Inc., New York,(1993), pp 53-62
[35] Q. Chen and W. Xu, A zero-equation turbulence model for indoor airflow simulation, Energy and Buildings, vol. 28(1998), pp. 137-144
[36] B.E. Launder and D.B. Spalding, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics Eng., vol. 3(1974), pp. 269-289
[37] V. Yakhot, S.A. Orszag, S. Thangam, T.B. Gatski, C.G. Speziale, Development of turbulence models for shear flows by a double expansion technique, Physics of Fluid A, vol 4(1992), pp 1510-1520
[38] I. Hideo, Experimental study of natural convection in an inclined air layer, Int J. Heat Mass Transf. 27(8)(1984) pp 1127-1139
[39] A. Raji, M. Hasnaoui, M. Naimi, K. Slimani, M.T. Ouazzani, Effect of the subdivision of an obstacle on the natural convection heat transfer in a square cavity, computer and fluid 68(2012)
[40] 林明璋,矩形鰭片於空腔熱壁上之自然對流換熱特性研究,碩士論文,國立成功大學機械工程學系,2018
[41] Peng Wang, Yonghao Zhang and Zhaoli, Numerical study of three-dimensional natural convection in a cubical cavity at high Rayleigh numbers, Int J. Heat Mass Transf. 113 (2017), pp. 217-228
校內:2023-12-01公開