簡易檢索 / 詳目顯示

研究生: 李雅芬
Lee, Ya-fen
論文名稱: 基於可靠度理論之土壤液化機率評估法之研究
An evaluation method of liquefaction probability based on the reliability theory
指導教授: 李德河
Lee, Der-her
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 302
中文關鍵詞: 機率土壤液化不確定性可靠度指標
外文關鍵詞: soil liquefaction, probability, uncertainty, reliability index
相關次數: 點閱:95下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 土壤液化係常見的地震衍生災害之一,1999年921地震更是在台灣中部地區造成嚴重的液化災害。有鑑於不確定性及風險是大地工程重要特徵,傳統液化與不會液化的二元表示方式並無法反映該特徵,因此,本研究基於可靠度理論,考量參數及模式的不確定性,發展一個新的土壤年液化機率評估模式。首先,本研究以Youd and Idriss(2001)建議之SPT及CPT簡易液化評估法為基本公式,利用具不變量特性之Hasofer-Lind(1974)可靠度指標進行液化機率計算。茲因在不確定性考量下,隨機變數多達7個,在滿足計算便利及大面積區域的液化評估需求下,本研究提出應用認知巢狀分割方法(knowledge nested partition method; KNPM),以1個長度L及3個角度1、2及3所組成之函數式來表示之7個隨機變數,以建立一個新的且可全搜尋的可靠度指標求解方法,進而計算出液化機率。本研究也以SPT及CPT歷史液化/不液化資料為討論案例,與蒙地卡羅模擬法(@Risk)及迭代逼近法(EXCEL規劃求解)的所得結果比較與驗證後,已顯示本文建立之KNPM所求得之結果具正確性,可達到最佳化,並具程式化之優點。
    其次,基於一個嚴謹的可靠度理論架構,液化機率應能同時涵蓋模式及參數的不確定性。因此,本文透過大量歷史液化/不液化案例及現地試驗資料,分別提出模式及參數不確定性的量化方法,並將這些模式及參數的不確定性研究結果代入液化機率評估中。在模式不確定性部份,係根據搜集之SPT及CPT之歷史液化/不液化案例,進行多組不同數量之樣本隨機抽樣及分析,結果顯示Youd and Idriss修正之Seed 簡易法的模式不確定性可以c1= 1.06,COV(c1)= 0.06來表示,而Youd and Idriss修正之Robertson and Wride簡易法的模式不確定性則可以μc1= 1.16,COV(c1)= 0.12來表示,二個評估模式皆屬保守模式;在參數不確定性部份,則以員林及麥寮地區之SPT與CPT現地試驗資料為分析樣本,利用地質統計方法,來量化主要的液化評估參數(包括標準貫入試驗SPT-N值、細料含量、土壤單位重、圓錐貫入試驗CPT-qc值、圓錐貫入摩擦阻抗)之不確定性,分析結果顯示二個區域的不確定性有些許差異,但差異量不大,相當接近,本研究建議可以COV= 0.15、0.14、0.02、0.04、0.14來分別表示N、FC、Wt、qc及fs的不確定性。
    綜整上述研究結果(包括可靠度指標求解、模式及參數的不確定性),本研究建立一套新的土壤液化機率評估模式。且基於台灣早期地震災害及相關資料的缺乏,地震引致的年液化機率驗證工作相當困難,本研究藉由與能量消散理論計算所得之年液化機率結果比較,已驗證本研究所建立之年液化機率模式具一定程度正確性。最後以員林地區為研究案例進行結果比較,並評估員林地區在車籠埔斷層及彰化斷層再次錯斷條件下的平均年液化機率(average annual probability of liquefaction; AAPL),車籠埔斷層錯動條件下之AAPL介於0.0007~0.0050間,彰化斷層錯動條件下之AAPL則介於0.0001~0.0021間,最後繪製液化重現期等值線分佈圖,以供區域地震液化防災參考。

    Soil liquefaction is one of earthquake-induced hazards. During the 1999 Chi-Chi earthquake, the damage caused by liquefaction was most serious in the central Taiwan. The traditional binary representation, liquefied or non-liquefied, is incapable to reflect the uncertainty and risk, which are the important characters in the geotechnique engineering. Therefore, this paper develops a new evaluation model of annual probability of liquefaction (APL) in the consideration of the uncertainties of soil parameters and model based on the reliability theory. The SPT-based and CPT-based simplified methods suggested by Youd and Idriss (2001), called herein Seed method and RW method, are taken as the basic equations. The reliability index proposed by Hasofer-Lind (1974), that owns the invariable characteristic, is used to calculate the probability of liquefaction. There are seven random variables used under the uncertainty consideration in this paper. For this reason, the knowledge nested partition method (KNPM) is employed to establish a new and global-search method for determining the reliability index in the satisfaction of calculation efficiency and the need to liquefaction evaluation for large areas. Then the functions consisted of one length L and three angles 1、2 and 3 can be used to mean the foregoing seven random variables. Through the liquefied and non-liquefied case histories, analysis results of the KNPM method are compared and verified by the results of Monte Carlo simulation and iteration technique, showing that the calculating results obtained by the KNPM are correct and can reach optimal.
    With a rigid framework of the reliability theory, an evaluation of probability of liquefaction has to involve the uncertainties of model and parameters at the same time. The methods to quantify the uncertainties of model and parameters are proposed by way of a great number of case histories and field data, and these quantitative results can be used in the liquefaction probability evaluation. In the model uncertainty, the random sampling and analysis of alternatives, resulted from different quantity of SPT-based and CPT-based case histories are adopted. The SPT-based results revel the uncertainty of Seed’s method can be defined by c1= 1.06 and COV(c1)= 0.06. The CPT-based results demonstrate the uncertainty of RW’s method can be expressed by c1= 1.16 and COV(c1)= 0.12. Both two methods are conservative models. In the soil parameter uncertainties, the SPT-based and CPT-based field data in the Yuanlin and Mailiao areas are taken, and geostatistic method is utilized to quantify the uncertainties of soil parameters, including the standard penetration value (N), fines content (FC), soil weight (Wt), cone tip resistance (qc) and sleeve friction (fs). These results show that the soil parameter uncertainties between two areas have some differences, which are but fairly closer. So, this paper suggests that the soil parameter uncertainties of N、FC、Wt、qc and fs are 0.15, 0.14, 0.02, 0.04 and 0.14, respectively.
    To sum up the above-mentioned study results, including the reliability index and uncertainties of model and soil parameters, this paper develops a new evaluation model of probability of soil liquefaction. Owing to the lack of earthquake hazards and related data in early Taiwan, the verification of annual probability of liquefaction induced by earthquake is fairly difficult. By the comparison of the APL calculated from the energy dissipation theory, the proposed model has been proved to possess certain degree of accuracy. Finally, the APL in the Yuanlin area is evaluated subject to future re-reputure of Chelungpu fault and Changhua fault using the proposed model. The average annual probability of liquefaction (AAPL) is also calculated. Theses results show that AAPLs of Chelungpu fault and Changhua fault are 0.0007 to 0.0050 and 0.0001 to 0.0021, individually. The contour of average liquefaction return period is then drawn. In this study, these results can be a reference for regional liquefaction prevention.

    摘要………………………………………………………………………I 誌謝………………………………………..………………………..VII 目錄…………………………………………….……………..…..…IX 表目錄……………………………….………...….…………..…XIII 圖目錄………………………………......................……XIV 符號說明……………………………………….………………….…XXI 第一章 緒論………………………………….....…………………..1 1.1 研究動機與目的…………………………...………….........1 1.2 研究範圍及項目……………………..……………………………5 1.3 研究流程與論文內容………………………………………...….6 第二章 文獻回顧……………………………………….…..….…..11 2.1 前言………………………....……………………...........11 2.2 安全係數與機率………………………………...…...……...13 2.3 土壤液化評估方法……………….……………..………......17 2.4 機率式液化評估方法……….………………..………………..31 2.5 認知巢狀分割方法………………...……………….……….…50 2.6 能量消散理論………………………………………..………….52 2.7 Fibonacci最佳化搜尋方法……………………………...…….55 2.8 地質統計方法……………………………………………...……57 第三章 研究方法…………………………………....…….……...63 3.1 KNPM模式建立與驗證……………………………………...……63 3.2 CL1年液化機率評估模式……………………………………....79 3.3 CL2年液化機率評估模式……………………………………..…80 3.4 小結………………………………...……………………………89 第四章 模式不確定性……………………….………...……...….91 4.1 前言…………………………………………………...........91 4.2 模式不確定性量化方法………………………………….......93 4.3 案例樣本資料說明…….……………………................99 4.4 分析結果………………………….……...................106 4.5 Juang模式不確定性評估方法...........................131 4.6 小結…………………..................................151 第五章 土層參數不確定性…………………...………...……….155 5.1 前言…………………………….……………….............155 5.2 土層參數不確定性分析流程……………………………......157 5.3 研究區域…………………………………………………......161 5.4 分析結果………………………………………………........176 5.5 小結..……………………………………………...….......214 第六章 員林地區年液化機率……………………......…...……217 6.1 前言…………………………………………...………….....217 6.2 員林地區區域概述……………………………………….…...219 6.3 CL1年液化機率評估結果比較…….………………………....229 6.4 員林地區年液化機率評估……..…......................235 6.5 小結…..……………..................................263 第七章 結論……………………………...………………...…...265 參考文獻…………………………………………………..……..…269 附錄一 …………………………………...………………………..283 附錄二 ………………………………...……………………......287 附錄三………………………………………………...…………….289 自述……………………...…...……………….………………….299

    Andrus, R. D., and Stokoe, K. H., “Liquefaction resistance of soils from shear-wave velocity,” Journal of geotechnical and geoenvironmental engineering, Vol. 126, No., 11, pp. 1015-1025 (2000).
    Bird, J. F., and Bommer, J. J., “Earthquake losses due to ground failure,” Engineering Geology, No. 75, pp. 147-179 (2004).
    Boulanger, R. W., Mejia, l. H., and Idriss, L. M., “Liquefaction at Moss Landing during Loma Prieta earthquake,” Journal of Geotechnical Engineering, Vol. 123, No. 5, pp. 453-467 (1997).
    Campbell, K. W., “Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra, Seism. Res. Lett., Vol. 68, No. 1, pp. 154-157 (1997).
    Campbell, K. W., “Near source attenuation of peak horizontal acceleration,” Bulletin of the Seismological society of America, Vol. 71, pp. 2039-2070 (1981).
    Casagrande, A., “The role of Calculated Risk in earthwork and foundation engineering,” J. Soil Mech. Div., ASCE, Vol. 91, No. 4, pp. 1-40 (1965).
    Cetin, K.O., Seed, R.B., Kiureghian, A.D., Tokimatsu, K., Harder, L.F., Jr., Kayen, R.E., Moss, R.E.S., “Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 12, pp.1314-1340 (2004).
    Chowdhury, R. N. and Xu, D. W., “Geotechnical system reliability of slopes,” Reliability Engineering and System Safety, No.47, pp.141-151 (1995).
    Christian, J. T., “Geotechnical engineering reliability: how well do we know what we are doing?” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 10, pp. 985-1003 (2004).
    Christian, J. T., and Swiger, W. F., “Statistics of liquefaction and SPT results,” Journal of the Geotechnical Engineering Division, Vol. 101, No. GT11, pp.1135-1150 (1975).
    Davis, R. O., and Berrill, J. B., “Energy dissipation and seismic liquefaction in sands,” Earthquake Engineering and Structural Dynamics, Vol. 10, pp.59-68 (1982)
    DeGroot, D. J., and Baecher, G. B., “Estimation autocovariance on in-situ soil properties,” Journal of Geotechnical Engineering, ASCE, Vol. 119, No. 1, pp. 147-166 (1993).
    Deutsch, C. V., and Journel, A. G., GSLIB: Geostatistical software library and user’s guide, Oxford University Press, New York (1998).
    Ditlevsen, O., “Model uncertainty in structural reliability,” Structural Safety, Vol. 1, pp. 73-86 (1982).
    Ditlevson, O., Uncertainty modeling, McGraw-Hill, New York (1981).
    Duncan, J. M., “Factors of safety and reliability in geotechnical engineering,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No.4, pp. 307-315 ( 2000).
    Elton, D. J., and Tarik H. H., “Liquefaction potential map for Charleston, South Carolina,” Journal of Geotechnical Engineering, ASCE, Vol. 116, No. 2, pp. 244-265 (1990).
    Gutenberg, B., and Richter, C. F., Seismicity of the Earth and Related Phenomena, Princeton University Press, Princeton, New Jersey, p.310 (1954).
    Haldar, A. and Miller, F. J., "Statistical evaluation of cyclic strength of sand," Journal of Geotechnical Engineering, ASCE, Vol. 110, No.12, pp.1785-1802 (1984).
    Haldar, A., and Tang, W. H., “Probabilistic evaluation of liquefaction potential,” Journal of the Geotechnical Engineering Division, Vol. 105, No. 2, pp. 145-163 (1979).
    Harr, M. E., Reliability-Based Design in Civil Engineering. McGraw-Hill, New York (1987).
    Hasofer, A. M., and Lind, N. C., “An exact and invariant first-order reliability format,” Journal of the Engineering Mechanics Division, Vol. 100, No. EM1, pp. 111-121 (1974).
    Hwang, J. H., Yang, C. W., and Juang, D. S., ”A practical reliability-based method for assessing soil liquefaction potential,” Soil Dynamics and Earthquake Engineering, No. 24, pp. 761-770 (2004).
    Ishihara, K., “Stability of natural deposits during earthquakes,” 11th international conference on soil mechanics and foundation engineering, Vol. 1, pp. 321-376 (1985).
    Iwasaki, T., Arakawa, T., and Tokida, K., “Simplified Procedures for Assessing Soil Liquefaction During Earthquakes,” Soil Dynamics and Earthquake Engineering Conference Southampton, pp. 925-939 (1982).
    Juang, C. H., and Tso, T. H., “Uncertainty propagation in CPT-based liquefaction resistance evaluation,” Geotech. Site Characterization: Proc. 1st Int. Conf. on site characterization, P. K. Robertson and P. W. Mayne, eds., Balkema, Rotterdam, The Netherlands, pp. 1087-1092 (1998).
    Juang, C. H., Chen, C. J., “A rational method for development of limit state for liquefaction evaluation based on shear wave velocity measurements,” International Journal for Numerical and Analytical Methods in Geotechnique, No. 24, pp.1-27 (2000).
    Juang, C. H., Chen, C. J., Tang, W. H. and Rosowsky, D. V., “CPT-based liquefaction analysis, Part 1: Determiniation of limit state function,” Geotechnique, Vol. 50, No. 5, pp. 583-592 (2000b).
    Juang, C. H., Fang, S. Y., and Khor, E. H., ”First-Order Reliability Method for Probabilistic Liquefaction Triggering Analysis CPT,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 3, pp. 337-350 (2006).
    Juang, C. H., Rosowsky, D. V., and Tang, W. H., “Reliability-based method for assessing liquefaction potential of soils,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 8, pp. 684-689 (1999).
    Juang, C. H., Yuan, H., Lee, D. H., and Lin, P. S., “Simplified cone penetration test-based method for evaluating liquefaction resistance of soils,“Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 1, pp. 66-80 (2003).
    Juang, C. H., Yuan, S. H., Yuan. H., and Khor, E. H., “Characterization of the uncertainty of the Robertson and Wride model for liquefaction potential evaluation,” Soil Dynamics and Earthquake Engineering, Vol. 24, pp. 771-780 (2004).
    Juang. C. H., Chen, C. J., Jiang, T., and Andrus, R. D., “Risk-based liquefaction potential evaluation using standard penetration tests,” Canadian Geotechnical Journal, No. 37, pp. 1195-1208 (2000a).
    Kiefer, J., “Sequential minimax search for a maxium,” Proc. Amer. Math. Soc., Vol. 4, 99. 502-506 (1953).
    Kitanidis, P. K., Introduction to geostatistics: applications to hydrogeology, Cambridge University Press, New York (1997).
    Kramer, S.L., Geotechnical Earthquake Engineering, Prentice-Hall, New York (1996).
    Kulhawy, F. H., and Tautmann, C. H., “Estimation of in situ test uncertainty,” Uncertainty in geologic environment: from theory to practice, GSP No. 58, New York, pp. 269-286 (1996).
    Lai, S. Y, Hsu, S. C., and Hsieh, M. J., ”Discriminate model for evaluating soil liquefaction potential using cone penetration test data,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 12, pp. 771-780 (2004).
    Lai, S. Y, Hsu, S. C., and Hsieh, M. J., ”Discriminate model for evaluating soil liquefaction potential using cone penetration test data,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 12, pp. 771-780 (2004).
    Law, K. T., Cao, Y. L., He, G. N., “An energy approach for assessing seismic liquefaction potential,” Canadian Geotechnical Journal, Vol. 27, No. 3, pp. 320-329. (1990).
    Lee, W.H.K., Shin, T.C., Kuo, K.W., and Chen, K.C., CWB free-field strong-motion data from the 921 Chi-Chi earthquake, Vol. 1 (1999).
    Li, K. S. and P. Lumb, “Probabilistic design of slopes,” Canadian Geotechnical Journal, Vol. 24, pp.520-535 (1987).
    Liao, S. S. C., and Whitman, R. V., “Overburden correction factors for SPT in sand,” Journal of Geotechnical Engineering, ASCE, Vol. 112, No. 3, pp. 373-377 (1986).
    Liao, S. S. C., Veneziano, D., and Whitman, R.V., “Regression models for evaluation liquefaction probability,” Journal of the Geotechnical Engineering, Vol. 114, No. 4, pp.389-411 (1988).
    Low, B. K. and Einstein, H. H., “Simplified reliability analysis for wedge mechanisms in rock slopes,” Proc., 6th Int. Symp., pp.499-507 (1992).
    Low, B. K. and Tang, W. H., “Probabilistic slope analysis using Janbu’s generalized procedure of slices,” Computers and Geotechnics, Vol. 21, No. 2, pp. 121-142. (1997a)
    Low, B. K., “Reliability analysis of rock wedges.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 123, No. 6, pp. 498-505 (1997).
    Low, B. K., and Tang, W. H., ”Efficient reliability evaluation using spreadsheet,” Journal of Engineering Mechanics, Vol. 123, No. 7, pp. 749-752 (1997b).
    Nasser, S. N., and Shokooh, A. “A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing,“ Canadian Geotechnical Journal, Vol. 16, pp. 659-678 (1979).
    Oka, Y. and Wu, T. H., “System reliability of slope stability,” Journal of Geotechnical Engineering, Vol. 116, No. 8, pp. 1185-1189 (1990).
    Olsen, R. S., and Koester, J. P., “Prediction of Liqudfaction resistance3 using the CPT,” In Proceedings of the International Symposium on Cone Penetration Testing, Linkoping, Sweden, Vol. 2, pp. 251-256 (1995).
    Park, H. and West, T. R. “Development of a probabilistic approach for rock wedge failure,” Engineering Geology, No. 59, pp. 233-251 (2001).
    Peck, R. B., Hanson, W. E., and Thornburn, T. H., Foundation Engineering, Wiley, New York (1974).
    Peiter, L., Earthquake hazard analysis: issue and insights, Columbia university press, New York (1990).
    Phoon, K. K., “Characterization of uncertainties in geomaterials and geotechnical models,” International Symposium on Geohazards Mitigation, Tainan, Taiwan, pp. D-1~D-27 (2006)
    Phoon, K. K., and Kulhawy, F. H., “Evaluation of geotechnical property variability,” Canadian Geotechnical Journal, Vol. 36, pp.625-639 (1999a).
    Phoon, K. K., Kulhawy, F. H., “Characterization of geotechnical variability,” Canadian Geotechnical Journal, Vol. 36, pp. 612-624 (1999b).
    Pun, L., Introduction on optimization practice, John Wiley (1969).
    Robertson, P. K., “Soil classification using CPT,” Canadian Geotechnical Journal, Vol. 27, No. 1, pp. 151-158 (1990).
    Robertson, P. K., and Campanella, R. G., “Liquefaction potential of sands using the CPT,” Journal of Geotechnical Engineering, Vol. 111, No. 3, pp. 384-403 (1985).
    Robertson, P. K., and Wride, C. E., “Cyclic liquefaction and its evaluation based on the SPT and CPT,” Proceeding of the NCEER workshop on evaluation of liquefaction resistance of soils, pp. 41-88 (1997).
    Robertson, P. K., and Wride, C. E., “Evaluation cyclic liquefaction potential using the cone penetration test,” Canadian Geotechnical Journal, Vol. 35, pp. 442-459 (1998).
    Seed, H. B. and Idriss, I. M., Ground motions and soil liquefaction during earthquakes, Earthquake Engineering Research Institute Monograph, Oakland, Calif (1982).
    Seed, H. B., and Idriss, I. M., “Simplified procedure for evaluating soil liquefaction potential,” J. Soil Mech. Fiund. Div., Vol. 97, No, 9, pp. 1249-1273 (1971).
    Seed, H. B., Tokimatsu, K. Harder, L. F., and Chung, R. M., “Influence of SPT procedures in soil liquefaction resistance evaluation,” Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 12, pp. 1425-1445 (1985).
    Shi, L., Olafsson, S., And Sun, N., “New parallel randomized algorithms for the traveling salesman problem,” Computer and Operations Research, No. 26, pp. 371-394 (1999).
    Shibata, T., and Teparaksa, W., “Evaluation of liquefaction potentials of soils using cone penetration tests,” Soil and Foundations, Vol. 28, No.2, pp. 49-60 (1988).
    Shinozuka, M., “Basic analysis of structural safety,” Journal of Structural Division, Vol. 109, No.3 (1983).
    Stark, T. D., and Olson, S. M., “Liquefaction resistance using CPT and field case histories,” Journal of Geotechnical Engineering, Vol. 121, No. 12, pp.856-869 (1995).
    Tichy, M., Applied methods of structural reliability, Boston (1993).
    Tokimatsu, K., and Yoshimi, Y., “Empirical correlation of soil liquefaction based on SPT-N value and fines contents,” Soil and Foundations, Vol. 23, No. 4, pp. 56-74 (1983).
    Walsh, G. R., Methods of optimization, John Wiley (1975).
    Whitman, R. V., “Evaluating calculated risk in geotechnical engineering,” Journal of Geotechnical Engineering, Vol. 110, No. 2, pp. 145-188 (1984).
    Yegian, M. K., and Whitman, A. M., “Risk analysis for ground failure by liquefaction,” Journal of the Geotechnical Engineering, Vol. 104, No. GT7, pp. 921-938 (1978).
    Youd, T. L., and Idriss, I. M., “Summary Report,” Proceeding of the NCEER workshop on evaluation of liquefaction resistance of soils, Salt Lake, pp.1-40 (1997).
    Youd, T. L., Idriss, I. M., “Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 4, pp. 297-313 (2001).
    Zhang, L., Tang, W. H., Zhang, L., and Zheng, J., “Reducing Uncertainty of Prediction for Empirical Correlations,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 5, pp. 526-534 (2004).
    中華人民共和國國家標準,建築抗震設計規範GBJ11-89,中國建築工業出版社,北京 (1989)。
    日本道路協會,道路橋示方書‧同解說,V耐震設計編 (1990)。
    日本道路協會,道路橋示方書‧同解說,V耐震設計編 (1996)。
    李咸亨、李忠訓、徐文義、侯冠至、吳志明,「液化潛能分析方法之評比」,第九屆大地工程研討會論文集,桃園,第F010-1~3頁(2001)。
    李德河、古志生,「CPT於新生地液化評估及地盤改良之應用」,921集集大地震週年紀念學術研討會論文集,第413~436頁 (2000)。
    李德河、古志生、林宏明、田坤國、高清泉、林鋕鋒,「地盤液化與沉陷」,1999集集大地震災害調查研討會論文集,第D81-D101頁 (1999)。
    李德河、古志生、蘇宏修,「CPT土壤分類之探討」,中國土木水利工程學刊,第13卷,第2期,第479-487頁 (2001)。
    亞新工程顧問股份有限公司,土壤液化評估與處理對策研擬第一期計畫(彰化縣員林鎮、大村鄉及社頭鄉)總報告 (2000)。
    林世元,「台南七股地區民國80年發生液化位址之調查分析」,國立成功大學土木工程研究所碩士論文 (1999)。
    林炳森、張啟文、林商裕、謝基政,「南投地區土壤液化評估方法之研究」,921集集大地震週年紀念學術研討會論文集,第199-232頁 (2000)。
    紀雲曜、李雅芬,「砂土層液化模糊平均機率評估方法之研究」,台灣公共工程學刊,第1卷,第1期,第1-16頁 (2005)。
    紀雲曜、李雅芬、李德河,「土壤液化機率及危害度評估」,中國土木水利工程學刊,第18卷,第1期,第1-12頁 (2006)。
    紀雲曜、陳怡睿、上官百龍,「評估地盤液化潛能新簡易模式」,長榮學報,第4卷,第2期,第79~94頁(2001)。
    紀雲曜、歐麗婷、李雅芬、李德河,「地震引致軟弱砂質地盤液化發生機率之評估」,建築學報,第56期,第51-74頁 (2006)。
    胡德欽,「台北盆地現場飽和砂性土壤液化潛能分析」,現代營建,第54期,第34-45頁 (1984)。
    倪勝火、賴宏源,「常用液化評估法對921地震案例適用性探討」,921集集大地震週年紀念學術研討會論文集,第233-270頁 (2000)。
    卿建業、謝宜宏,「大地工程系統性能可靠度之估算」,地工技術,第109期,第27-38頁 (2006)。
    秦中天、陳皆儒、孫介文、王劍虹,「大地工程規範的新趨勢-可靠度設計」,2004年岩盤工程研討會論文集,第46-55頁 (2004)。
    張徽正、林啟文、陳勉銘、盧詩丁,〈台灣活動斷層概論,五十萬分之一台灣活動斷層分布圖說明書〉,經濟部中央地質調查所特刊,第10號 (1998)。
    許光毅、李民,「由九二一地震造成之液化案例獲得之經驗」,經濟部中央地質調查所特刊第十二號:九二一集集大地震專輯,第255-270頁 (2000)。
    許迪,丁昆仑,蔡林根,「區域水土特性參數時空變異分布特徵及相關分析」,中國水利水電科學研究院學報,第1卷,第1期 (2003)。
    陳文山,「921集集地震斷層的特性」,2004年台灣活動斷層與地震災害研討會論文集,第62-68頁 (2004)。
    陳文山,「車籠埔斷層的古地震事件與地質的意義」,臺灣之活動斷層與地震災害研討會論文集,第83-88頁 (2002)。
    陳文山、李昆杰、李龍昇、張憲卿,「車籠埔-大尖山斷層的歷史地震記錄」,地質,第21卷,第2期,第53-60頁 (2002)。
    陳文山、李龍昇、楊志成、顏一勤、楊小青、劉力豪、張徽正、李元希,「車籠埔斷層古地震新研究」,土木水利,第30卷,第1期,第10-13頁 (2003)。
    陳勉銘、何信昌,「九二一集集地震斷層與車籠埔斷層之關連」,經濟部中央地質調查所特刊十二號,第113-138頁 (2000)。
    陳建元,「以模糊理論評估砂土之液化潛能」,國立成功大學土木工程研究所碩士論文 (1995)。
    陳俶季,「土壤液化潛能之風險評估」,地工技術雜誌,第38期,第5-16頁 (1992)。
    陳俶季、李慶胤、蔡瑞興,「921集集大地震員林地區液化潛能評估之研究」,2002年液化潛能評估方法及潛能圖之製作研討會論文集,第L-1~L-10頁 (2002)。
    陳堯中、陳名利,「以剪力模數評估砂土液化潛能之研究」,中國土木水利工程學刊,第3卷,第3期,第203-212頁 (1991)。
    傅啟明,「以機率模式評估土壤液化潛能」,海洋大學河海工程研究所 (1986)。
    黃俊鴻、陳正興,「土壤液化評估規範之回顧與前瞻」,地工技術,第70期,第23-44頁 (1998)。
    黃俊鴻、楊志文,「以集集地震案例資料建立土壤臨界液化強度曲線」,中國土木水利工程學刊,第13卷,第2期,第339-352頁 (2001)。
    黃敏郎、劉守恆、仲琦科技,地理資訊系統基礎操作實務,松崗 (2005),
    溫國樑、江賢仁、張芝苓、張道明,「台灣地區之強地動觀測與地動特性」,臺灣之活動斷層與地震災害研討會論文集,第10-29頁 (2002)。
    萬鼎工程服務股份有限公司,塑化煉油廠臥式壓力容器(ECT)區(8200)新建工程預壓後地質改良成果檢核工程報告書(1998)。
    萬鼎工程服務股份有限公司,塑化煉油廠覆土式槽區地質改良成果檢核工作報告書 (1997)。
    經濟部中央地質調查所,台灣坡地社區工程地質調查與探勘報告,彰化地區,第4卷,第4集 (1985)。
    葉吉芳、張固宇、梁明德,「模糊可能性理論評估砂性土壤液化潛能」,模糊系統學刊,第4卷,第1期,第19-29頁 (1998)。
    褚炳麟、徐松析、張益銘、林成川,「簡易經驗分析法在霧峰土壤液化案例研究之適用性」,2002年液化潛能評估方法及潛能圖之製作研討會論文集,第F-1~L-12頁 (2002)。
    褚炳麟、張益銘、陳冠閔、徐松圻、張錦銘,「921地震霧峰、太平地區液化及下陷調查分析」,地工技術,第77期,第19-28頁 (2000)。
    鄭錦桐、李鍚堤、蔡義本,「利用地理資訊系統輔助地震危害度分析」,地工技術,第69期,第41-50頁 (1998)。
    賴聖耀,「以極限狀態法建立標準貫入試驗之液化分析模式」,中國土木水利工程學刊,第18卷,第1期,第13-24頁 (2006)。
    賴聖耀、林炳森、李豐博、謝明志,「荷氏錐貫入試驗與液化可靠度之相關研究」,土木水利,第16卷,第2期,第43-60頁 (1989)。
    謝佑明、陳皆儒,「限度狀態設計與可靠度設計觀念」,地工技術,第109期,第15-26頁 (2006)。
    謝基政,「南投地區土壤液化評估方法之研究」,國立中興大學土木工程研究所碩士論文 (2000)。
    蘇鼎鈞、王劍虹,「員林地區集集大地震土壤液化評估案例探討」,地工技術,第81期,第57-68頁 (2000)。

    下載圖示 校內:2009-07-30公開
    校外:2009-07-30公開
    QR CODE